Skip to main content
Log in

A density functional theory research on Cs–O activation process of GaAlAs photocathodes

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Using plane-wave ultrasoft pseudopotential based on first-principles, the Cs–O activation process of GaAlAs photocathodes is investigated. In the Cs–O alternate activation process, Cs–O unit is inclined to form the Cs-outer structure. After the adsorption of O atom, the additional O atoms weaken the dipole between Cs atoms and β 2 (2 × 4) surface and introduce additional dipole between Cs and O. Dual-dipole model is used to express the variation tendency of dipole moment and work function. During activation process, electrons of Cs atoms offset to the surface, the additional electrons at the surface cause n-type surface state, and result in downwards band bending; at the same time, the vacuum level is gradually lowered, forming two potential barriers. An experiment is performed and the photocurrent curve is well consistent with the calculation results. After Zn doping, the work function near Zn atoms is lower than surrounding, causing the scale-like effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Liu Z, Sun Y, Peterson S, Pianetta P (2008) Photoemission study of Cs–NF3 activated GaAs(100) negative electron affinity photocathodes. Appl Phys Lett 92:241107-1–241107-3

    Google Scholar 

  2. Zou JJ, Chang BK, Chen HL, Liu L (2007) Variation of quantum-yield curves for GaAs photocathodes under illumination. J Appl Phys 101:033126-1–033126-6

    Article  Google Scholar 

  3. Machuca F, Liu Z, Sun Y, Pianetta P, Spicer WE, Pease RFW (2003) Oxygen species in Cs/O activated gallium nitride (GaN) negative electron affinity photocathodes. J Vac Sci Technol B 21:1863–1869

    Article  Google Scholar 

  4. Rao T, Burrill A, Chang XY, Smedley J, Nishitani T, Garcia CH, Poelker M, Seddon E, Hannon FE, Sinclair CK, Lewellen J, Feldmang D (2006) Photocathodes for the energy recovery linacs. Nucl Instrum Methods Phys Res A 557:124–130

    Article  Google Scholar 

  5. Chen XL, Zhao J, Chang BK, Yu XH, Hao GH, Xu Y, Cheng HC (2013) Photoemission characteristics of (Cs, O) activation exponential-doping Ga0.37Al0.63As photocathodes. J Appl Phys 113:213105-1–213105-8

    Google Scholar 

  6. Nishitani T, Tabuchi M, Takeda Y, Suzuki Y, Motoki K, Meguro T (2009) High-brightness spin-polarized electron source using semiconductor photocathodes. Jpn J Appl Phys 148:06FF02

    Google Scholar 

  7. Martinelli RU, Ettenberg M (1974) Electron transport and emission characteristics of negative electron affinity AlxGal−x As alloys (0 ~ x~0.3). J Appl Phys 45:3896–3898

    Article  Google Scholar 

  8. Alperovich VL, Paulish AG, Scheibler HE, Terekhov AS (1995) Evolution of electronic properties at the p-GaAs(Cs, O) surface during negative electron affinity state formation. Appl Phys Lett 66:2122–2124

    Article  Google Scholar 

  9. Orlov DA, Hoppe M, Weigel U, Schwalm D, Terekhov AS, Wolf A (2001) Energy distributions of electrons emitted from GaAs(Cs, O). Appl Phys Lett 78:2721–2723

    Article  Google Scholar 

  10. Xue Z (1987) Impossible: preparation for NEA polycrystalline photoemissive layers. Optoelectron Technol 1:23–28

    Google Scholar 

  11. Joshi KB, Sharma BK, Paliwal U, Barbiellini B (2012) Pressure-dependent electronic properties of MgO polymorphs:a first-principles study of compton profiles and autocorrelation functions. J Mater Sci 47:7549–7757

    Article  Google Scholar 

  12. Razumovskiy VI, Ghosh G (2015) A first-principles study of cementite (Fe3C) and its alloyed counterparts: structural properties, stability, and electronic structure. Comput Mater Sci 110:169–181

    Article  Google Scholar 

  13. Tabatabaei M, Shodja HM, Esfarjani K (2015) Gap tuning and effective electron correlation energy in amorphous silicon: a first principles density functional theory-based molecular dynamics study. Comput Mater Sci 102:110–118

    Article  Google Scholar 

  14. Perdew J, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  Google Scholar 

  15. Bouhemadou A, Haddadi K, Bin-Omran S, Khenata R, Al-Douri Y, Maabed S (2015) Structural, elastic, electronic and optical properties of the quaternary nitridogallate LiCaGaN2: first-principles study. Mat Sci Semicon Proc 40:64–76

    Article  Google Scholar 

  16. Kandemir EB, Gönül B, Barkema GT, Yu KM, Walukiewicz W, Wang LW (2014) Modeling of the atomic structure and electronic properties of amorphous GaN1−x As x . Comput Mater Sci 82:100–106

    Article  Google Scholar 

  17. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561

    Article  Google Scholar 

  18. Sieber B, Farvacque JL, Wang J, Steeds JW (1993) First step of degradation mechanisms in AlGaAs/GaAs laser-like structures solid-state. Mater Sci Eng B-Adv 20:29–32

    Article  Google Scholar 

  19. Wang W, Lee G, Huang M, Wallace RM, Cho K (2010) First-principles study of GaAs (001) β2(2 × 4) surface oxidation and passivation with H, Cl, S, F, and GaO. J Appl Phys 107:103720-1–103720-10

    Google Scholar 

  20. Krukowski S, Kempisty P, Strak P (2009) Electrostatic condition for the termination of the opposite face of the slab in density functional theory simulations of semiconductor surfaces. J Appl Phys 105:113701-1–113701-5

    Article  Google Scholar 

  21. Brik MG, Ma CG, Krasnenko V (2013) First-principles calculations of the structural and electronic properties of the cubic CaZrO3 (001) surfaces. Surf Sci 608:146–153

    Article  Google Scholar 

  22. Zou J, Chang B, Yang Z, Zhang Y, Qiao J (2009) Evolution of surface potential barrier for negative-electron-affinity GaAs photocathodes. J Appl Phys 105:013714-1–013714-6

    Google Scholar 

  23. Kitchin JR (2009) Correlations in coverage-dependent atomic adsorption energies on Pd(111). Phys Rev B 79:205412-1–205412-6

    Article  Google Scholar 

  24. Schimka L, Harl L, Stroppa A, Grüneis A, Marsman M, Mittendorfer F, Kresse G (2010) Accurate surface and adsorption energies from many-body perturbation theory. Nat Mater 9:741–744

    Article  Google Scholar 

  25. Yu X, Chang B, Chen X, Xu Y, Wang H, Wang M (2014) Cs adsorption on Ga0.5Al0.5As(001)β2 (2 × 4) surface: a first-principles research. Comput Mater Sci 84:226–231

    Article  Google Scholar 

  26. Hogan C, Paget D, Garreau Y, Sauvage M, Onida G, Reining L, Chiaradia P, Corradini V (2003) Early stages of cesium adsorption on the As-rich(2 × 8) reconstruction of GaAs(001): adsorption sites and Cs-induced chemical bonds. Phys Rev B 68:205313-1–205313-11

    Google Scholar 

  27. Rosa AL, Neugebauer J (2006) First-principles calculations of the structural and electronic properties of clean GaN(0001) surfaces. Phys Rev B 73:205346-1–205346-13

    Google Scholar 

  28. Su CY, Spicer WE, Lindau I (1983) Photoelectron spectroscopic determination of the structure of (Cs, O) activated GaAs (011) surface. J Appl Phys 54:1413–1422

    Article  Google Scholar 

  29. Saxena AK (1980) The conduction band structure and deep levels in Ga1−xAlxAs alloys from a high-pressure. J Phys. C-Solid State Phys 13:4323–4334

    Article  Google Scholar 

  30. Pickett WE (1989) Pseudopotential methods in condensed matter applications. Comput Phys Rep 9:115–197

    Article  Google Scholar 

  31. Spicer WE, Herrera-Gómez A (1993) Modern theory and application of photocathodes. Proc SPIE 2022:18–33

    Article  Google Scholar 

  32. Yu X, Chang B, Wang H, Wang M (2014) First principles research on electronic structure of Zn-doped Ga0.5Al0.5As(001)β2(2 × 4) surface. Solid State Commun 187:13–17

    Article  Google Scholar 

  33. http://www.ioffe.ru/SVA/NSM/Semicond/AlGaAs/basic.html

Download references

Acknowledgements

The authors would like to thank School of Information and Electrical Engineering, Ludong University for first-principles calculations. This work has been financially supported by the National Natural Science Foundation of China (No. 61572012) and the Key Natural Science Foundation of Hubei Province of China (No. 2014CFA055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohua Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X. A density functional theory research on Cs–O activation process of GaAlAs photocathodes. J Mater Sci 51, 8259–8269 (2016). https://doi.org/10.1007/s10853-016-0103-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0103-5

Keywords