Journal of Materials Science

, Volume 51, Issue 17, pp 8168–8176 | Cite as

Control of octahedral rotations via octahedral connectivity in an epitaxially strained [1 u.c.//4 u.c.] LaNiO3/LaGaO3 superlattice

  • H. Y. Qi
  • M. K. Kinyanjui
  • X. D. Chen
  • J. Biskupek
  • D. Geiger
  • E. Benckiser
  • H.-U. Habermeier
  • B. Keimer
  • U. Kaiser
Original Paper


For ABO3 perovskites, the magnetic and electronic properties couple strongly to the BO6 octahedral rotations and distortions. Therefore, precise control of the octahedral rotations and distortions via epitaxial strain and interfacial octahedral connectivity has become the key for engineering novel functionalities in ABO3 heterostructures and superlattices. In this paper, we investigated the local octahedral rotations in a [(1 unit cell (u.c.)//4 u.c.) × 13] LaNiO3/LaGaO3 superlattice grown on a (001) SrTiO3 substrate. By using aberration-corrected high-resolution transmission electron microscopy, we found that the octahedral rotations of NiO6 adopted the same [100] and [010] rotational magnitudes as the neighboring GaO6 till the surface of the superlattice. Our results indicate that in LaNiO3-based superlattices, the NiO6 rotations can be precisely controlled via interfacial octahedral connectivity when the thickness of the LaNiO3 layer is only 1 unit cell.


Oxygen Anion LaNiO3 Convergent Beam Electron Diffraction Rotation Pattern NiO2 Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to Sabine Grözinger for cross-section TEM sample preparation. We gratefully acknowledge the financial support by the German Research Foundation (DFG) and the Ministry of Science, Research and the Arts (MWK) of the state Baden-Württemberg within the DFG: KA 1295/17-1 project.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10853_2016_92_MOESM1_ESM.docx (2.2 mb)
Supplementary material 1 (DOCX 2243 kb)


  1. 1.
    Imada M, Fujimori A, Tokura Y (1998) Metal-insulator transitions. Rev Mod Phys 70:1263–1309CrossRefGoogle Scholar
  2. 2.
    Tokura Y, Nagaosa N (2000) Orbital physics in transition-metal oxides. Science 288:462–468CrossRefGoogle Scholar
  3. 3.
    Mannhart J, Schlom DG (2010) Oxide interfaces: an opportunity for electronics. Science 327:1607–1611CrossRefGoogle Scholar
  4. 4.
    Hwang HY, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N, Tokura Y (2012) Emergent phenomena at oxide interfaces. Nat Mater 11:103–113CrossRefGoogle Scholar
  5. 5.
    Yu P, Chu YH, Ramesh R (2012) Oxide interfaces: pathways to novel phenomena. Mater Today 15:320–327CrossRefGoogle Scholar
  6. 6.
    Granozio FM, Kostera G, Rijndersa G (2013) Functional oxide interfaces. MRS Bull 38:1017–1023CrossRefGoogle Scholar
  7. 7.
    Chakhalian J, Freeland JW, Millis AJ, Panagopoulos C, Rondinelli JM (2014) Colloquium: emergent properties in plane view: strong correlations at oxide interfaces. Rev Mod Phys 86:1189–1201CrossRefGoogle Scholar
  8. 8.
    Rondinelli JM, Spaldin NA (2011) Structure and properties of functional oxide thin films: insights from electronic-structure calculations. Adv Mater 23:3363–3381CrossRefGoogle Scholar
  9. 9.
    Rondinelli JM, Fennie CJ (2012) Octahedral rotation-induced ferroelectricity in cation ordered perovskites. Adv Mater 24:1961–1968CrossRefGoogle Scholar
  10. 10.
    May SJ, Kim JW, Rondinelli JM, Karapetrova E, Spaldin NA, Bhattacharya A, Ryan PJ (2010) Quantifying octahedral rotations in strained perovskite oxide films. Phys Rev B 82:014110CrossRefGoogle Scholar
  11. 11.
    Vailionis A, Boschker H, Siemons W, Houwman EP, Blank DHA, Rijnders G, Koster G (2011) Misfit strain accommodation in epitaxial ABO3 perovskites: lattice rotations and lattice modulations. Phys Rev B 83:064101CrossRefGoogle Scholar
  12. 12.
    Rondinelli JM, May SJ, Freeland JW (2012) Control of octahedral connectivity in perovskite oxide heterostructures: an emerging route to multifunctional materials discovery. MRS Bull 37:261–270CrossRefGoogle Scholar
  13. 13.
    May SJ, Smith CR, Kim JW, Karapetrova E, Bhattacharya A, Ryan PJ (2011) Control of octahedral rotations in (LaNiO3)n/(SrMnO3)m superlattices. Phys Rev B 83:153411CrossRefGoogle Scholar
  14. 14.
    Moon EJ, Balachandran PV, Kirby BJ, Keavney DJ, Sichel-Tissot RJ, Schlepütz CM, Karapetrova E, Cheng XM, Rondinelli JM, May SJ (2014) Effect of interfacial octahedral behavior in ultrathin manganite films. Nano Lett 14:2509–2514CrossRefGoogle Scholar
  15. 15.
    Kumah DP, Disa AS, Ngai JH, Chen H, Malashevich A, Reiner JW, Ismail-Beigi S, Walker FJ, Ahn CH (2014) Tuning the structure of nickelates to achieve two-dimensional electron conduction. Adv Mater 26:1935–1940CrossRefGoogle Scholar
  16. 16.
    Kim YM, Kumar A, Hatt A, Morozovska AN, Tselev A, Biegalski MD, Ivanov I, Eliseev EA, Pennycook SJ, Rondinelli JM, Kalinin SV, Borisevich AY (2013) Interplay of octahedral tilts and polar order in BiFeO3 Films. Adv Mater 25:2497–2504CrossRefGoogle Scholar
  17. 17.
    He J, Borisevich A, Kalinin SV, Pennycook SJ, Pantelides ST (2010) Control of octahedral tilts and magnetic properties of perovskite oxide heterostructures by substrate symmetry. Phys Rev Lett 105:227203CrossRefGoogle Scholar
  18. 18.
    Borisevich AY, Chang HJ, Huijben M, Oxley MP, Okamoto S, Niranjan MK, Burton JD, Tsymbal EY, Chu YH, Yu P, Ramesh R, Kalinin SV, Pennycook SJ (2010) Suppression of octahedral tilts and associated changes in electronic properties at epitaxial oxide heterostructure interfaces. Phys Rev Lett 105:087204CrossRefGoogle Scholar
  19. 19.
    Qiao L, Jang JH, Singh DJ, Gai Z, Xiao H, Mehta A, Vasudevan RK, Tselev A, Feng Z, Zhou H, Li S, Prellier W, Zu X, Liu Z, Borisevich A, Baddorf AP, Biegalski MD (2015) Dimensionality controlled octahedral symmetry-mismatch and functionalities in epitaxial LaCoO3/SrTiO3 heterostructures. Nano Lett 15:4677–4684CrossRefGoogle Scholar
  20. 20.
    Kan D, Aso R, Kurata H, Shimakawa Y (2014) Unit-cell thick BaTiO3 blocks octahedral tilt propagation across oxide heterointerface. J Appl Phys 115:184304CrossRefGoogle Scholar
  21. 21.
    Aso R, Kan D, Shimakawa Y, Kurata H (2014) Control of structural distortions in transition-metal oxide films through oxygen displacement at the heterointerface. Adv Funct Mater 24:5177–5184CrossRefGoogle Scholar
  22. 22.
    Kan D, Aso R, Kurata H, Shimakawa Y (2015) Phase control of a perovskite transition-metal oxide through oxygen displacement at the heterointerface. Dalton Trans 44:10594–10607CrossRefGoogle Scholar
  23. 23.
    Hwang J, Son J, Zhang JY, Janotti A, Van de Walle CG, Stemmer S (2013) Structural origins of the properties of rare earth nickelate superlattices. Phys Rev B 87:060101CrossRefGoogle Scholar
  24. 24.
    Aso R, Kan D, Shimakawa Y, Kurata H (2013) Atomic level observation of octahedral distortions at the perovskite oxide heterointerface. Sci Rep 3:2214CrossRefGoogle Scholar
  25. 25.
    Aso R, Kan D, Shimakawa Y, Kurata H (2014) Octahedral tilt propagation controlled by A-site cation size at perovskite oxide heterointerfaces. Cryst Growth Des 14:2128–2132CrossRefGoogle Scholar
  26. 26.
    Kinyanjui MK, Lu Y, Gauquelin N, Wu M, Frano A, Wochner P, Reehuis M, Christiani G, Logvenov G, Habermeier HU, Botton GA, Kaiser U, Keimer B, Benckiser E (2014) Lattice distortions and octahedral rotations in epitaxially strained LaNiO3/LaAlO3 superlattices. Appl Phys Lett 104:221909CrossRefGoogle Scholar
  27. 27.
    Qi HY, Kinyanjui MK, Biskupek J, Geiger D, Benckiser E, Habermeier HU, Keimer B, Kaiser U (2015) Local octahedral rotations and octahedral connectivity in epitaxially strained LaNiO3/LaGaO3 superlattices. J Mater Sci 50:5300–5306CrossRefGoogle Scholar
  28. 28.
    Chaloupka J, Khaliullin G (2008) Orbital order and possible superconductivity in LaNiO3/LaMO3 superlattices. Phys Rev Lett 100:016404CrossRefGoogle Scholar
  29. 29.
    Benckiser E, Haverkort MW, Brück S, Goering E, Macke S, Frano A, Yang X, Andersen OK, Cristiani G, Habermeier HU, Boris AV, Zegkinoglou I, Wochner P, Kim HJ, Hinkov V, Keimer B (2011) Orbital reflectometry of oxide heterostructures. Nat Mater 10:189–193CrossRefGoogle Scholar
  30. 30.
    Wu M, Benckiser E, Haverkort MW, Frano A, Lu Y, Nwankwo U, Brück S, Audehm P, Goering E, Macke S, Hinkov V, Wochner P, Christiani G, Heinze S, Logvenov G, Habermeier HU, Keimer B (2013) Strain and composition dependence of orbital polarization in nickel oxide superlattices. Phys Rev B 88:125124CrossRefGoogle Scholar
  31. 31.
    Boris AV, Matiks Y, Benckiser E, Frano A, Popovich P, Hinkov V, Wochner P, Castro-Colin M, Detemple E, Malik VK, Bernhard C, Prokscha T, Suter A, Salman Z, Morenzoni E, Cristiani G, Habermeier HU, Keimer B (2011) Dimensionality control of electronic phase transitions in nickel-oxide superlattices. Science 332:937–940CrossRefGoogle Scholar
  32. 32.
    Frano A, Schierle E, Haverkort MW, Lu Y, Wu M, Blanco-Canosa S, Nwankwo U, Boris AV, Wochner P, Cristiani G, Habermeier HU, Logvenov G, Hinkov V, Benckiser E, Weschke E, Keimer B (2013) Orbital control of noncollinear magnetic order in nickel oxide heterostructures. Phys Rev Lett 111:106804CrossRefGoogle Scholar
  33. 33.
    Berner G, Sing M, Pfaff F, Benckiser E, Wu M, Christiani G, Logvenov G, Habermeier HU, Kobayashi M, Strocov VN, Schmitt T, Fujiwara H, Suga S, Sekiyama A, Keimer B, Claessen R (2015) Dimensionality-tuned electronic structure of nickelate superlattices explored by soft-X-ray angle-resolved photoelectron spectroscopy. Phys Rev B 92:125130CrossRefGoogle Scholar
  34. 34.
    He Q, Ishikawa R, Lupini AR, Qiao L, Moon EJ, Ovchinnikov O, May SJ, Biegalski MD, Borisevich AY (2015) Towards 3D mapping of BO6 octahedron rotations at perovskite heterointerfaces, unit cell by unit cell. ACS Nano 9:8412–8419CrossRefGoogle Scholar
  35. 35.
    Hwang J, Zhang JY, Son J, Stemmer S (2012) Nanoscale quantification of octahedral tilts in perovskite films. Appl Phys Lett 100:191909CrossRefGoogle Scholar
  36. 36.
    LeBeau JM, Findlay SD, Allen LJ, Stemmer S (2010) Position averaged convergent beam electron diffraction: theory and applications. Ultramicroscopy 110:118–125CrossRefGoogle Scholar
  37. 37.
    LeBeau JM, D’Alfonso AJ, Wright NJ, Allen LJ, Stemmer S (2011) Determining ferroelectric polarity at the nanoscale. Appl Phys Lett 98:052904CrossRefGoogle Scholar
  38. 38.
    Jia CL, Lentzen M, Urban K (2003) Atomic-resolution imaging of oxygen in perovskite ceramics. Science 299:870–873CrossRefGoogle Scholar
  39. 39.
    Jia CL, Urban K (2004) Atomic-resolution measurement of oxygen concentration in oxide materials. Science 303:2001–2004CrossRefGoogle Scholar
  40. 40.
    Jia CL, Mi SB, Urban K, Vrejoiu I, Alexe M, Hesse D (2008) Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nat Mater 7:57–61CrossRefGoogle Scholar
  41. 41.
    Jia CL, Mi SB, Faley M, Poppe U, Schubert J, Urban K (2009) Oxygen octahedron reconstruction in the SrTiO3/LaAlO3 heterointerfaces investigated using aberration-corrected ultrahigh-resolution transmission electron microscopy. Phys Rev B 79:081405CrossRefGoogle Scholar
  42. 42.
    Lentzen M, Jahnen B, Jia CL, Thust A, Tillmann K, Urban K (2002) High-resolution imaging with an aberration-corrected transmission electron microscope. Ultramicroscopy 92:233–242CrossRefGoogle Scholar
  43. 43.
    Lentzen M (2006) Progress in aberration-corrected high-resolution transmission electron microscopy using hardware aberration correction. Microsc Microanal 12:191–205CrossRefGoogle Scholar
  44. 44.
    Urban K, Jia CL, Houben L, Lentzen M, Mi SB, Tillmann K (2009) Negative spherical aberration ultrahigh-resolution imaging in corrected transmission electron microscopy. Philos Trans R Soc A 367:3735–3753CrossRefGoogle Scholar
  45. 45.
    Koch CT (2002) Determination of core structure periodicity and point defect density along dislocations, PH.D. thesis, Arizona State UniversityGoogle Scholar
  46. 46.
    Glazer AM (1972) The classification of tilted octahedra in perovskites. Acta Crystallogr Sect B 28:3384–3392CrossRefGoogle Scholar
  47. 47.
    Garcia-Munoz JL, Rodriguez-Carvajal J, Lacorre P, Torrance JB (1992) Neutron-diffraction study of RNiO3 (R = La, Pr, Nd, Sm): electronically induced structural changes across the metal-insulator transition. Phys Rev B 46:4414–4425CrossRefGoogle Scholar
  48. 48.
    Vasylechko L, Matkovskii A, Savytskii D, Suchocki A, Wallrafen F (1999) Crystal structure of GdFeO3-type rare earth gallates and aluminates. J Alloys Compd 291:57–65CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • H. Y. Qi
    • 1
  • M. K. Kinyanjui
    • 1
  • X. D. Chen
    • 1
  • J. Biskupek
    • 1
  • D. Geiger
    • 1
  • E. Benckiser
    • 2
  • H.-U. Habermeier
    • 2
  • B. Keimer
    • 2
  • U. Kaiser
    • 1
  1. 1.Central Facility of Electron Microscopy, Electron Microscopy Group of Materials ScienceUniversity of UlmUlmGermany
  2. 2.Max Planck Institute for Solid State ResearchStuttgartGermany

Personalised recommendations