Skip to main content
Log in

Effect of thermal history on nucleation and crystallization of poly(lactic acid)

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, a successive heating and cooling protocol was designed to investigate the self-nucleation behavior of poly(lactic acid), PLA. The main objective of this investigation was to study the efficiency of the α and α′ crystalline modifications of PLA. This was carried out by comparing crystallization temperatures upon cooling after self-nucleation of samples previously crystallized at various isothermal temperatures ranging from 80 to 130 °C. During heating to the partial melting range, three different mechanisms were observed for crystallized samples. For samples crystallized below 100 °C, an exothermic peak was detected prior the main melting peak which is ascribed to the α′–α solid-state transition. For samples crystallized between 100 and 120 °C, a melt recrystallization mechanism was observed. Finally, for samples crystallized above 120 °C, only melting of the α phase was detected. Upon cooling after partial melting, it was found that samples comprising a mixture of α and α′ exhibited the highest crystallization temperature, the highest nuclei density, and the smallest spherulite size. Moreover, it was observed that samples that were isothermally crystallized between 100 and 120 °C, heated up to partial melting, and then cooled back to room temperature exhibited two peculiar crystallization peaks at 100 and 120° C. This phenomenon was ascribed to the formation of α and α′ crystalline phases as revealed by X-ray diffraction. In addition, by slightly changing the temperature within the self-nucleation temperature range, a change of the proportion of each peak was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Saeidlou S, Huneault MA et al (2012) Poly(lactic acid) crystallization. Prog Polym Sci 37(12):1657–1677

    Article  Google Scholar 

  2. Mihai M, Huneault MA et al (2007) Extrusion foaming of semi-crystalline PLA and PLA/thermoplastic starch blends. Macromol Biosci 7(7):907–920

    Article  Google Scholar 

  3. Suryanegara L et al (2011) The synergetic effect of phenylphosphonic acid zinc and microfibrillated cellulose on the injection molding cycle time of PLA composites. Cellulose 18(3):689–698

    Article  Google Scholar 

  4. Zhai W et al (2009) A study of the crystallization, melting, and foaming behaviors of polylactic acid in compressed CO2. Int J Mol Sci 10(12):5381–5397

    Article  Google Scholar 

  5. Kokturk G et al (2002) Evolution of phase behavior and orientation in uniaxially deformed polylactic acid films. Polym Eng Sci 42(8):1619–1628

    Article  Google Scholar 

  6. Li H, Huneault MA (2011) Comparison of sorbitol and glycerol as plasticizers for thermoplastic starch in TPS/PLA blends. J Appl Polym Sci 119(4):2439–2448

    Article  Google Scholar 

  7. Mihai M, Huneault MA, Favis BD (2009) Crystallinity development in cellular poly(lactic acid) in the presence of supercritical carbon dioxide. J Appl Polym Sci 113(5):2920–2932

    Article  Google Scholar 

  8. Li H, Huneault MA (2008) Crystallization of PLA/thermoplastic starch blends. Int Polym Proc 23(3):412–418

    Article  Google Scholar 

  9. Pantani R et al (2010) Crystallization kinetics of virgin and processed poly(lactic acid). Polym Degrad Stab 95(7):1148–1159

    Article  Google Scholar 

  10. Zhang J et al (2006) Confirmation of disorder α form of poly(L-lactic acid) by the X-ray fiber pattern and polarized IR/Raman spectra measured for uniaxially-oriented samples. Macromol Symp 242(1):274–278

    Article  Google Scholar 

  11. Zhang J et al (2005) Crystal modifications and thermal behavior of poly(l-lactic acid) revealed by infrared spectroscopy. Macromolecules 38(19):8012–8021

    Article  Google Scholar 

  12. Pan P et al (2008) Effect of crystallization temperature on crystal modifications and crystallization kinetics of poly(L-lactide). J Appl Polym Sci 107(1):54–62

    Article  Google Scholar 

  13. Pan P et al (2008) Polymorphic transition in disordered poly(l-lactide) crystals induced by annealing at elevated temperatures. Macromolecules 41(12):4296–4304

    Article  Google Scholar 

  14. Pan P et al (2007) Polymorphous crystallization and multiple melting behavior of poly(l-lactide): molecular weight dependence. Macromolecules 40(19):6898–6905

    Article  Google Scholar 

  15. Zhang J et al (2008) Disorder-to-order phase transition and multiple melting behavior of poly(l-lactide) investigated by simultaneous measurements of WAXD and DSC. Macromolecules 41(4):1352–1357

    Article  Google Scholar 

  16. Kawai T et al (2007) Crystallization and melting behavior of poly (l-lactic acid). Macromolecules 40(26):9463–9469

    Article  Google Scholar 

  17. Kalish JP et al (2011) Spectroscopic and thermal analyses of α′ and α crystalline forms of poly(l-lactic acid). Polymer 52(3):814–821

    Article  Google Scholar 

  18. Chen X, Kalish J, Hsu SL (2011) Structure evolution of α′-phase poly(lactic acid). J Polym Sci Part B Polym Phys 49(20):1446–1454

    Article  Google Scholar 

  19. Li H, Huneault MA (2007) Effect of nucleation and plasticization on the crystallization of poly(lactic acid). Polymer 48(23):6855–6866

    Article  Google Scholar 

  20. Fillon B et al (1994) Efficiency scale for polymer nucleating agents. J Therm Anal Calorim 42(4):721–731

    Article  Google Scholar 

  21. Fillon B et al (1993) Self-nucleation and enhanced nucleation of polymers. Definition of a convenient calorimetric “efficiency scale” and evaluation of nucleating additives in isotactic polypropylene (α phase). J Polym Sci Part B Polym Phys 31(10):1395–1405

    Article  Google Scholar 

  22. Fillon B et al (1993) Self-nucleation and recrystallization of isotactic polypropylene (α phase) investigated by differential scanning calorimetry. J Polym Sci Part B Polym Phys 31(10):1383–1393

    Article  Google Scholar 

  23. Lotz B (1998) α and β phases of isotactic polypropylene: a case of growth kinetics phase reentrency in polymer crystallization. Polymer 39(19):4561–4567

    Article  Google Scholar 

  24. Fillon B et al (1993) Self-nucleation and recrystallization of polymers. Isotactic polypropylene, β phase: β − α conversion and β −α growth transitions. J Polym Sci Part B Polym Phys 31(10):1407–1424

    Article  Google Scholar 

  25. Schneider S et al (2001) Self-nucleation and enhanced nucleation of polyvinylidene fluoride (α-phase). Polymer 42(21):8787–8798

    Article  Google Scholar 

  26. Marquez L, Rivero I, Müller AJ (1999) Application of the SSA calorimetric technique to characterize LLDPE grafted with diethyl maleate. Macromol Chem Phys 200(2):330–337

    Article  Google Scholar 

  27. Arnal M et al (2000) Applications of successive self-nucleation and annealing (SSA) to polymer characterization. J Therm Anal Calorim 59(1):451–470

    Article  Google Scholar 

  28. Michell RM et al (2010) Effect of sequence distribution on the isothermal crystallization kinetics and successive self-nucleation and annealing (SSA) behavior of poly(ε-caprolactone-co-ε-caprolactam) copolymers. Eur Polym J 46(6):1334–1344

    Article  Google Scholar 

  29. Schmidt SC, Hillmyer MA (2001) Polylactide stereocomplex crystallites as nucleating agents for isotactic polylactide. J Polym Sci Part B Polym Phys 39(3):300–313

    Article  Google Scholar 

  30. Anderson KS, Hillmyer MA (2006) Melt preparation and nucleation efficiency of polylactide stereocomplex crystallites. Polymer 47(6):2030–2035

    Article  Google Scholar 

  31. De Santis F, Pantani R, Titomanlio G (2011) Nucleation and crystallization kinetics of poly(lactic acid). Thermochim Acta 522(1–2):128–134

    Article  Google Scholar 

  32. Androsch R, Iqbal HMN, Schick C (2015) Non-isothermal crystal nucleation of poly (l-lactic acid). Polymer 81:151–158

    Article  Google Scholar 

  33. Saeidlou S et al (2012) Evidence of a dual network/spherulitic crystalline morphology in PLA stereocomplexes. Polymer 53(25):5816–5824

    Article  Google Scholar 

  34. Sabino MA, Ronca G, Müller AJ (2000) Heterogeneous nucleation and self-nucleation of poly(p-dioxanone). J Mater Sci 35(20):5071–5084

    Article  Google Scholar 

  35. Sabino MA, Feijoo JL, Müller AJ (2000) Crystallisation and morphology of poly(p-dioxanone). Macromol Chem Phys 201(18):2687–2698

    Article  Google Scholar 

  36. Yasuniwa M et al (2008) Melting behavior of poly(l-lactic acid): X-ray and DSC analyses of the melting process. Polymer 49(7):1943–1951

    Article  Google Scholar 

  37. Avrami Melvin (1939) Kinetics of phase change-I. Gen Theory J Chem Phys 7:1103–1109

    Article  Google Scholar 

  38. Supaphol P, Spruiell JE (2000) Crystalline memory effects in isothermal crystallization of syndiotactic polypropylene. J Appl Polym Sci 75(3):337–346

    Article  Google Scholar 

  39. Wasanasuk K, Tashiro K (2011) Structural regularization in the crystallization process from the glass or melt of poly(l-lactic acid) viewed from the temperature-dependent and time-resolved measurements of FTIR and wide-angle/small-angle X-ray scatterings. Macromolecules 44(24):9650–9660

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank FRQNT and NSERC for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel A. Huneault.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalali, A., Huneault, M.A. & Elkoun, S. Effect of thermal history on nucleation and crystallization of poly(lactic acid). J Mater Sci 51, 7768–7779 (2016). https://doi.org/10.1007/s10853-016-0059-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0059-5

Keywords

Navigation