Skip to main content
Log in

XANES analysis of a Cm-doped borosilicate glass under \(\alpha \)-self-irradiation effects

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Industrial borosilicate glasses containing fission products and minor actinides can be subjected to structural damage caused mainly by \(\alpha \)-self-irradiation effects. In this field of glasses under extreme conditions, we present an X-ray Absorption Near-Edge Structure investigation of two six-oxide borosilicate curium-doped glasses (based on the International Simplified Glass (ISG) composition). The first sample is an 8-year ISG damaged glass, which has already accumulated an \(\alpha \)-decay dose greater than 6.10\(^{18}\) \(\alpha \) g\(^{-1}\), a value corresponding to a damaged but stabilized structural state. The second sample results from annealing of the latter ISG damaged glass. Three species, Cm, Pu and Zr were probed at \(L_{3}\)-edge, \(L_{3}\)-edge and K-edge, respectively. From the experimental results, Cm and Pu species appear respectively in +3 and +4 oxidation states in both glasses. No Cm local environment changes are observed. In contrast, a small variation in Pu local environment appears between the damaged and annealed glasses, reflecting a possible coordination variation or Pu–Zr substitution. A more drastic effect appears for Zr local environment, where a sevenfold coordinated site grows over time under \(\alpha \)-self-irradiation effects, at the expense of the initial major sixfold site of symmetry. Moreover, annealing the damaged glass does not permit to retrieve a similar structural state to the one of a just melted curium-doped ISG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Weber WJ, Ewing RC, Angell CA, Arnold GW, Cormack AN, Delaye JM, Griscom DL, Hobbs LW, Navrotsky A, Price DL, Stoneham AM, Weinberg MC (1997) Radiation effects in glasses used for immobilization of high-level waste and plutonium disposition. J Mater Res 12(08):1948–1978

    Article  Google Scholar 

  2. Ewing RC, Weber WJ, Clinard FW Jr (1995) Radiation effects in nuclear waste forms for high-level radioactive waste. Prog Nuclear Energy 29(2):63–127

    Article  Google Scholar 

  3. Yang KJ, Wang TS, Zhang GF, Peng HB, Chen L, Zhang LM, Li CX, Tian F, Yuan W (2013) Study of irradiation damage in borosilicate glass induced by He ions and electrons. Nuclear Instrum Methods B 307:541–544

    Article  Google Scholar 

  4. Boizot B, Ollier N, Olivier F, Petite G, Ghaleb D, Malchukova E (2005) Irradiation effects in simplified nuclear waste glasses. Nuclear Instrum Methods B 240(1–2):146–151

    Article  Google Scholar 

  5. Matzke H (1988) Radiation damage effects in nuclear materials. Nuclear Instrum Methods B 32(1–4):455–470

    Article  Google Scholar 

  6. Peuget S, Delaye JM, Jégou C (2014) Specific outcomes of the research on the radiation stability of the French nuclear glass towards alpha decay accumulation. J Nuclear Mater 444(1–3):76–91

    Article  Google Scholar 

  7. Abbas A, Serruys Y, Ghaleb D, Delaye JM, Boizot B, Reynard B, Calas G (2000) Evolution of nuclear glass structure under \(\alpha \)-irradiation. Nuclear Instrum Methods B 166–167:445–450

    Article  Google Scholar 

  8. Mendoza C, Peuget S, Bouty O, Caraballo R, Jegou C (2012) Simplified nuclear glasses structure behaviour under various irradiation conditions: a Raman spectroscopy study. Proc Chem 7:581–586

    Article  Google Scholar 

  9. Liu GK, Zhorin VV, Antonio MR, Li ST, Williams CW, Soderholm L (2000) Studies of local structure of Cm3+ in borosilicate glass using laser and X-ray spectroscopic methods and computational modeling. J Chem Phys 112(3):1489–1496

    Article  Google Scholar 

  10. Dardenne K, González-Robles E, Rothe J, Müller N, Christill G, Lemmer D, Praetorius R, Kienzler B, Metz V, Roth G, Geckeis H (2015) XAS and XRF investigation of an actual HAWC glass fragment obtained from the Karlsruhe vitrification plant (VEK). J Nuclear Mater 460:209–215

    Article  Google Scholar 

  11. Hess NJ, Weber WJ, Conradson SD (1998) U and Pu Liii XAFS of Pu-doped glass and ceramic waste forms. J Alloys Compd 271–273:240–243

    Article  Google Scholar 

  12. Hess NJ, Weber WJ, Conradson SD (1998) X-ray absorption fine structure of aged, Pu-doped glass and ceramic waste forms. J Nuclear Mater 254(2–3):175–184

    Article  Google Scholar 

  13. Lopez C, Deschanels X, Den Auwer C, Cachia J-N, Peuget S, Bart J-M (2005) X-ray absorption studies of borosilicate glasses containing dissolved actinides or surrogates. Phys Scr T115:342–345

    Article  Google Scholar 

  14. Charpentier T, Martel L, Mir AH, Somers J, Jégou C, Peuget S (2016) Self-healing capacity of nuclear glass observed by NMR spectroscopy. Sci Rep 6:25499

    Article  Google Scholar 

  15. Inagaki Y, Furuya H, Idemitsu K, Banba T, Matsumoto S, Muraoka S (1991) Microstructure of simulated high-level waste glass doped with short-lived actinides 238Pu and 244Cm. MRS Proc 257:199–206

    Article  Google Scholar 

  16. Vernaz E, Gin S, Veyer C (2012) Waste glass. In: Konings RJM (ed) Comprehensive nuclear materials. Elsevier, Oxford, pp 451–483

    Chapter  Google Scholar 

  17. Farges F, Calas G (1991) Structural analysis of radiation damage in zircon and thorite: an X-ray absorption spectroscopy study. Am Mineral 76:60–73

    Google Scholar 

  18. Sitaud B, Solari PL, Schlutig S, Llorens I, Hermange H (2012) Characterization of radioactive materials using the MARS beamline at the synchrotron SOLEIL. J Nuclear Mater 425(1–3):238–243

    Article  Google Scholar 

  19. Denecke MA (2006) Actinide speciation using X-ray absorption fine structure spectroscopy. Coord Chem Rev 250(7–8):730–754

    Article  Google Scholar 

  20. Venault L, DenAuwer C, Moisy P, Colomp P, Scheinost AC, Hennig C (2010) Transporting radioactive samples from the laboratory to the ESRF. ESRF News 54:18

    Google Scholar 

  21. LLorens I, Solari PL, Sitaud B, Bes R, Cammelli S, Hermange H, Othmane G, Safi S, Moisy P, Wahu S, Bresson C, Schlegel ML, Menut D, Bechade JL, Martin P, Hazemann J, Proux O, DenAuwer C (2014) X-ray absorption spectroscopy investigations on radioactive matter using MARS beamline at SOLEIL synchrotron. Radiochim Acta 102(11):957–972

    Google Scholar 

  22. Hennig C, Skanthakumar S, Soderholm L (2010) Double photoexcitation of 2p and 4f electrons in curium. J Electron Spectrosc 180(1–3):17–20

    Article  Google Scholar 

  23. Weigl M, Denecke MA, Panak PJ, Geist A, Gompper K (2005) EXAFS and time-resolved laser fluorescence spectroscopy (TRLFS) investigations of the structure of Cm(III)/Eu(III) complexed with di(chlorophenyl)dithiophosphinic acid and different synergistic agents. Dalton Trans 7:1281–1286

    Article  Google Scholar 

  24. Jollivet P, Calas G, Galoisy L, Angeli F, Bergeron B, Gin S, Ruffoni MP, Trcera N (2013) An enhanced resolution of the structural environment of zirconium in borosilicate glasses. J Non-Cryst Solids 381:40–47

    Article  Google Scholar 

  25. Ravel B, Newville M (2005) ATHENA ARTEMIS, HEPHAESTUS : data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12(4):537–541

    Article  Google Scholar 

  26. Degueldre C, Borca C, Cozzo C (2013) Curium analysis in plutonium uranium mixed oxide by X-ray fluorescence and absorption fine structure spectroscopy. Talanta 115:986–991

    Article  Google Scholar 

  27. Soderholm L, Skanthakumar S, Williams CW (1999) Structure and magnetic properties of the high-Tc related phase \({\text{ Cm }}_{2}{\text{ CuO }}_{4}\). Phys Rev B 60(6):4302–4308

    Article  Google Scholar 

  28. Assefa Z, Haire RG, Stump NA (1999) Excitation and emission profiles of Cm(III) and Cm(IV) in neat samples and lead borosilicate glasses. In:Symposium QQ—scientific basis for nuclear waste management XXII, vol 556 of MRS online proceedings library archive

  29. Newville M (2014) Fundamentals of XAFS. Rev Mineral Geochem 78(1):33–74

    Article  Google Scholar 

  30. Martin P, Grandjean S, Ripert M, Freyss M, Blanc P, Petit T (2003) Oxidation of plutonium dioxide: an X-ray absorption spectroscopy study. J Nuclear Mater 320(1–2):138–141

    Article  Google Scholar 

  31. Grambow B (2013) Waste forms for actinides: borosilicate glasses. In: Peter CB, Ginger ES (eds) Uranium—Cradle to Grave (Mineralogical Association of Canada), short course series edition, vol 43. Robert Raeside, Winnipeg, MB, p 301–316

    Google Scholar 

  32. Conradson SD, Al Mahamid I, Clark DL, Hess NJ, Hudson EA, Neu MP, Palmer PD, Runde WH, Tait CD (1998) Oxidation state determination of plutonium aquo ions using X-ray absorption spectroscopy. Polyhedron 17(4):599–602

    Article  Google Scholar 

  33. Ikeno H, Krause M, Höche T, Patzig C, Yongfeng H, Gawronski A, Tanaka I, Rüssel C (2013) Variation of Zr–L 2,3 XANES in tetravalent zirconium oxides. J Phys Condens Matter 25(16):165505

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank P. Martin, X. Deschanels, S. Peuget and J.-M. Delaye for valuable discussions, P. Jollivet for providing XAS crystalline references containing Zr, T. Dumas for providing sample holders, M. Bataille, P. Coste, C. Dubois, M. Desir, V. Broudic and P. Rigaux (all from CEA Marcoule) for technical and logistic support during the samples preparation, J. Rothe, M. Weigl (from Karlsruhe Institut für Technologie), C. Hennig (from Dresden Radiochemistry Institute) for providing Cm\(^{3+}\) aquo ion XANES spectra, and SOLEIL synchrotron for beamtime provision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Bouty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouty, O., Ramond, L., Solari, P.L. et al. XANES analysis of a Cm-doped borosilicate glass under \(\alpha \)-self-irradiation effects. J Mater Sci 51, 7918–7928 (2016). https://doi.org/10.1007/s10853-016-0058-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0058-6

Keywords

Navigation