Skip to main content
Log in

Scatter in tensile properties of flax fibre bundles: influence of determination and calculation of the cross-sectional area

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The scatter in tensile properties induced by the determination and calculation method of the cross-sectional area (CSA) of bast fibre bundles is almost as high as the scatter found in the literature. Different methods (light microscopy, high resolution flat-bed scanning, and laser-based fibre dimensional analysis) were applied to exactly the same flax fibre bundles prior to tensile testing, and different approaches for the calculation of the CSA were applied. The CSA method alone is introducing up to 300 % of variation in tensile strength data. These results show that there is a strong need for standards and standardisation of fibre bundle testing. Care has to be taken when comparing results from studies using slightly different methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Notes

  1. The pixel size can be calculated from the scanning resolution: Pixel size in mm = 25.4 mm/inch/scanning resolution in dpi.

  2. Median (\( \tilde{x} \)) and Median Absolute Deviation (MAD) are given as distribution independent measures:

    \( {\text{MAD}} = {\text{median}}(\left| {x_{i} - \tilde{x}} \right|) \).

References

  1. Reux F, Verpoest I (eds) (2012) Flax and Hemp fibres: a natural solution for the composite industry. First edition, JEC composites prepared for JEC by the European Scientific Committee of the CELC, Paris, France (ISBN 978-2-9526276-1-0), p 215

  2. Müssig J, Haag K (2015) 2—The use of flax fibres as reinforcements in composites. In: Faruk O, Sain M (eds) Biofiber Reinforcements in Composite Materials, Woodhead Publishing, Cambridge, (ISBN 978-1-78242-122-1), p 35–85

  3. Joshi S, Drzal L, Mohanty A, Arora S (2004) Are natural fibre composites environmentally superior to glass fibre reinforced composites? Compos A Appl Sci Manuf 35:371–376

    Article  Google Scholar 

  4. Dicker MP, Duckworth PF, Baker AB, Francois G, Hazzard MK, Weaver PM (2014) Green composites: a review of material attributes and complementary applications. Compos A Appl Sci Manuf 56:280–289

    Article  Google Scholar 

  5. Baets J, Plastria D, Ivens J, Verpoest I (2014) Determination of the optimal flax fibre preparation for use in unidirectional flax–epoxy composites. J Reinf Plast Compos 33:493–502

    Article  Google Scholar 

  6. Fischer C (2014) Thin-walled composite structures with improved stiffness and damping properties. Bioplastics Magazine 09:16–17

  7. Shah D (2013) Developing plant fibre composites for structural applications by optimising composite parameters: a critical review. J Mater Sci 48:6083–6610. doi:10.1007/s10853-013-7458-7

    Article  Google Scholar 

  8. Shah DU, Schubel PJ, Clifford MJ (2013) Can flax replace E-glass in structural composites? A small wind turbine blade case study. Compos B Eng 52:172–181

    Article  Google Scholar 

  9. Baley C (2009) A review of biocomposite development. JEC Compos Mag 46:32–33

    Google Scholar 

  10. Bourmaud A, Ausias G, Lebrun G, Tachon ML, Baley C (2013) Observation of the structure of a composite polypropylene/flax and damage mechanisms under stress. Ind Crops Prod 43:225–236

    Article  Google Scholar 

  11. Müssig J, Fischer H, Graupner N, Drieling A (2010) Testing methods for measuring physical and mechanical fibre properties (plant and animal fibres). In: Müssig J (ed) Industrial applications of natural fibres: structure, properties and technical applications. Wiley, Chichester (ISBN 978-0-470-69501-1), p 269–309

  12. Schnegelsberg G (1999) Handbuch der Faser: Theorie und Systematik der Faser. Theorien und Systeme in Technik und Ökonomie; Bd. 1. Deutscher Fachverlag, Frankfurt am Main, Germany (ISBN 3-87150-624-9), p 720. (in German)

  13. Virk AS, Hall W, Summerscales J (2010) Failure strain as the key design criterion for fracture of natural fibre composites. Compo Sci Technol 70:995–999

    Article  Google Scholar 

  14. Pillin I, Kervoelen A, Bourmaud A, Goimard J, Montrelay N, Baley C (2011) Could oleaginous flax fibers be used as reinforcement for polymers? Ind Crops Prod 34:1556–1563

    Article  Google Scholar 

  15. Müssig J, Hughes M (2012) II—Flax reinforcements: fibres. In [1], p 39–60

  16. Bos H, van den Oever M, Peters O (2002) Tensile and compressive properties of flax fibres for natural fibre reinforced composites. J Mater Sci 37:1683–1692. doi:10.1023/A:1014925621252

    Article  Google Scholar 

  17. Bos H (2004) The potential of flax fibres as reinforcement for composite materials. Dissertation, Technische Universiteit Eindhoven, The Netherlands

  18. Charlet K, Béakou A (2011) Mechanical properties of interfaces within a flax bundle—Part I: experimental analysis. Int J Adhes Adhes 31:875–881

    Article  Google Scholar 

  19. Charlet K, Béakou A (2011) Mechanical characterization and modelling of interfacial lamella within a flax bundle. Proced Eng 10:906–991

    Article  Google Scholar 

  20. Charlet K, Jernot JP, Eve S, Gomina M, Bréard J (2010) Multi-scale morphological characterisation of flax: from the stem to the fibrils. Carbohydr Polym 82:54–61

    Article  Google Scholar 

  21. Nechwatal A, Mieck K-P, Reußmann T (2003) Developments in the characterization of natural fibre properties in the use of natural fibres for composites. Compo Sci Technol 63:1273–1279

    Article  Google Scholar 

  22. Stamboulis A, Baillie CA, Garkhail SK, van Melick HGH, Peijs T (2000) Environmental durability of flax fibres and their composites based on polypropylene matrix. Appl Compos Mater 7:273–294

    Article  Google Scholar 

  23. Astley OM, Donald AM (2003) The tensile deformation of flax fibres as studied by X-ray scattering. J Mater Sci 38:165–171. doi:10.1023/A:1021186421194

    Article  Google Scholar 

  24. Kulkarni AG, Satyanarayana G, Rohatgi PK, Viayan K (1981) Mechanical behavior of coir fibres under tensile load. J Mater Sci 16(4):905–914. doi:10.1007/BF00542734

    Article  Google Scholar 

  25. Mukherjee PS, Satyanarayana KG (1984) Structure and properties of some vegetable fibres—Part 1: Sisal fibre. J Mater Sci 19(12):3925–3934. doi:10.1007/BF00980755

    Article  Google Scholar 

  26. Keryvin V, Lan M, Bourmaud A, Parenteau T, Charleux L, Baley C (2015) Analysis of flax fibres viscoelastic behaviour at micro and nano scales. Compos A Appl Sci Manuf 68:219–225

    Article  Google Scholar 

  27. Guicheret-Retel V, Cisse O, Placet V, Beaugrand J, Pernes M, Boubakar ML (2014) Creep behaviour of single hemp fibres. Part II: influence of loading level, moisture content and moisture variation. J Mater Sci 50:2061–2072. doi:10.1007/s10853-014-8768-0

    Article  Google Scholar 

  28. Bobeth W (ed) (1993) Textile Faserstoffe—Beschaffenheit und Eigenschaft. Springer-Verlag, Berlin, Germany (ISBN 3-540-55697-4), p 431

  29. Placet V, Cisse O, Boubakar ML (2012) Influence of environmental relative humidity on the tensile and rotational behaviour of hemp fibres. J Mater Sci 47:3435–3446. doi:10.1007/s10853-011-6191-3

    Article  Google Scholar 

  30. Stamboulis A, Baillie C, Peijs T (2001) Effects of environmental conditions on mechanical and physical properties of flax fibers. Compos A Appl Sci Manuf 32:1105–1115

    Article  Google Scholar 

  31. Baley C, Morvan C, Grohens Y (2005) Influence of the absorbed water on the tensile strength of flax fibers. Macromol Symp 222:195–202

    Article  Google Scholar 

  32. Haag K, Müssig J (2013) FIBRAGEN—Flax for Improved Biomaterials through applied Genomics: New concepts to characterize the mechanical properties of flax fibre bundles. ResEff 2013—International Conference on Resource Efficiency in Interorganizational Networks. 13–14 November 2013, Georg-August-Universität Göttingen

  33. DIN EN 1007-4 (2004): Hochleistungskeramik—Keramische Verbundwerkstoffe—Verfahren zur Prüfung der Faserverstärkungen—Teil 4: Bestimmung der Zugeigenschaften von Fasern bei Raumtemperatur; Deutsche Fassung EN 1007-4:2004. Deutsche Norm (08/2004). (in German)

  34. XP T 25-501-2 (2009): Normalisation francaise: Fibres de renfort—Fibres de lin pour composites plastiques. Partie 2: Détermination des propriétés en traction des fibres élémentaires. Norme expérimentale. AFNOR (10/2009). (in French)

  35. XP T 25-501-3 (2010): Normalisation francaise: Fibres de renfort—Fibres de lin pour composites plastiques. Partie 3: Détermination des propriétés en traction des fibres techniques. Norme expérimentale. AFNOR (07/2010). (in French)

  36. Defoirdt N, Biswas S, Vriese LD, Tran LQN, van Acker J, Ahsan Q, Gorbatikh L, van Vuure A, Verpoest I (2010) Assessment of the tensile properties of coir, bamboo and jute fibre. Compos A Appl Sci Manuf 41:588–595

    Article  Google Scholar 

  37. Tanguy M, Bourmaud A, Baley C (2016) Plant cell walls to reinforce composite materials: relationship between nanoindentation and tensile modulus. Mater Lett 167:161–164

    Article  Google Scholar 

  38. Thomason J, Carruthers J (2012) Natural Fibre Cross Sectional Area, Its Variability and Effects on the Determination of Fibre Properties. J Biobased Mater Bioenerg, 6, 424–430

  39. Aslan M, Chinga-Carrasco G, Sorensen BF, Madsen B (2011) Strength variability of single flax fibres. J Mater Sci 46:6344–6354. doi:10.1007/s10853-011-5581-x

    Article  Google Scholar 

  40. Müssig J (2001) Untersuchung der Eignung heimischer Pflanzenfasern für die Herstellung von naturfaserverstärkten Duroplasten—vom Anbau zum Verbundwerkstoff—VDI Verlag GmbH, Düsseldorf, Germany (Fortschritt-Bericht VDI, Series 5, no. 630), (ISBN 3-18-363005-2) p 214. (in German)

  41. Blanchard J, Sobey A, Blake J (2016) Multi-scale investigation into the mechanical behaviour of flax in yarn, cloth and laminate form. Compos B Eng 84:228–235

    Article  Google Scholar 

  42. Virk AS, Hall W, Summerscales J (2010) Physical characterization of jute technical fibers: fiber dimensions. J Nat Fibers 7:216–228

    Article  Google Scholar 

  43. Bourmaud A, Morvan C, Bouali A, Placet V, Perré P, Baley C (2013) Relationships between micro-fibrillar angle, mechanical properties and biochemical composition of flax fibers. Ind Crops Prod 44:343–351

    Article  Google Scholar 

  44. Charlet K, Jernot JP, Gomina M, Baley C, Bizet L, Bréard J (2007) Morphology and mechanical behavior of a natural composite: the Flax Fiber. 16th International Conference on Composite Materials, 2007

  45. Morvan C, Andème-Onzighi C, Girault R, Himmelsbach DS, Driouich A, Akin DE (2003) Building flax fibres: more than one brick in the walls. Plant Physiol Biochem 41:935–944

    Article  Google Scholar 

  46. Slootmaker T, Müssig J (2010) SEM Catalogue for animal and plant fibres. In: Müssig, J (ed) Industrial applications of natural fibres: structure, properties and technical applications. Wiley, Chichester (ISBN 978-0-470-69501-1), p 311–336

  47. Haag K, Müssig J (2013) FIBRAGEN—Flax fibre for Improved Biomaterials through Applied Genomics. Poster presentation, PLANT 2030 Status Seminar, March 6–8, 2013, Kongresshotel am Templiner See, Potsdam

  48. Virk AS, Hall W, Summerscales J (2012) Modulus and strength prediction for natural fibre composites. Mater Sci Technol 28(7):864–871; J Nat Fibers 7:216–228, 2010

  49. Bensadoun F, Verpoest I, Baets J, Müssig J, Graupner N, Davies P, Gomina M, Kervoelen A, Baley C (2015) Development and validation of an impregnated fibre bundle test for natural fibres used as reinforcement in composites. In: Thomsen OT Aalborg University, Department of Mechanical and Manufacturing Engineering (Conference Chair): 20th International Conference on Composite Materials—ICCM20. Copenhagen, Denmark (19–24.07.2015)

Download references

Acknowledgements

We acknowledge the Federal Ministry of Education and Research for funding the project “FIBRAGEN—Flax for improved biomaterials through applied genomics” within the funding measure PLANT-KBBE III under the project code 0315911. Our special thanks go to Dr. Thomas Assheuer from Projektträger Jülich PTJ for his excellent support during the whole FIBRAGEN-project. We also acknowledge Yann Leray and Steve Bucknell from DiaStron Ltd. for their support and optimisations within the software. We thank Mr Erik Klebert, B.Sc. for his help with the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Müssig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haag, K., Müssig, J. Scatter in tensile properties of flax fibre bundles: influence of determination and calculation of the cross-sectional area. J Mater Sci 51, 7907–7917 (2016). https://doi.org/10.1007/s10853-016-0052-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0052-z

Keywords

Navigation