Skip to main content
Log in

Lowering the thermal conductivity of Sr(Ti0.8Nb0.2)O3 by SrO and CaO doping: microstructure and thermoelectric properties

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Excess SrO and CaO were added to the Sr(Ti0.8Nb0.2)O3 thermoelectric material, which was structurally compensated by the formation of Ruddlesden–Popper-type planar faults with the compositions SrO and/or (Sr, Ca)O. Both types of doping significantly changed the original isotropic Sr(Ti0.8Nb0.2)O3 microstructure and resulted in the formation of lamellar Ruddlesden–Popper-type phases within the Sr(Ti0.8Nb0.2)O3 grains. Three-dimensional networks of single Ruddlesden–Popper-type faults were also observed in the Sr(Ti0.8Nb0.2)O3 for both types of doping. The combination of both structural features significantly lowered the thermal conductivity in comparison with Sr(Ti0.8Nb0.2)O3 due to the enhanced phonon scattering observed at the planar faults, which proves that introducing such defects is a promising method for lowering the thermal conductivity of the Sr(Ti0.8Nb0.2)O3 thermoelectric material. The highest figure of merit (ZT = 0.08) was achieved with CaO doping, since the significantly reduced thermal conductivity was accompanied by an increased power factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Zhang B, Wang J, Zou T, Zhang S, Yaer X, Ding N, Liu C, Miao L, Li Y, Wu Y (2015) High thermoelectric performance of Nb-doped SrTiO3 bulk materials with different doping levels. J Mater Chem C 3(43):11406–11411

    Article  Google Scholar 

  2. Ohta S, Ohta H, Koumoto K (2006) Grain size dependence of thermoelectric performance of Nb-doped SrTiO3 polycrystals. J Ceram Soc Jpn 114(1325):102–105

    Article  Google Scholar 

  3. Lee KH, Kim SW, Ohta H, Koumoto K (2006) Ruddlesden-Popper phases as thermoelectric oxides: Nb-doped SrO(SrTiO3)n(n = 1,2). J Appl Phys 100(6):063717

    Article  Google Scholar 

  4. Wang N, Han L, He H, Ba Y, Koumoto K (2010) Effects of mesoporous silica addition on thermoelectric properties of Nb-doped SrTiO3. J Alloy Compd 497(1–2):308–311

    Article  Google Scholar 

  5. Lingner J, Letz M, Jakob G (2013) SrTiO3 glass–ceramics as oxide thermoelectrics. J Mater Sci 48(7):2812–2816

    Article  Google Scholar 

  6. Wang N, Chen H, He H, Norimatsu W, Kusunoki M, Koumoto K (2013) Enhanced thermoelectric performance of Nb-doped SrTiO3 by nano-inclusion with low thermal conductivity. Sci Rep 3:3449

    Google Scholar 

  7. Jerič M, de Boor J, Jančar B, Čeh M (2016) An enhanced thermoelectric figure of merit for Sr(Ti0.8Nb0.2)O3 based on a Ruddlesden–Popper-polytype-induced microstructure. J Eur Ceram Soc 36(5):1177–1182

    Article  Google Scholar 

  8. Ruddlesden SN, Popper P (1958) The compound Sr3Ti2O7 and its structure. Acta Crystallogr A 11(1):54–55

    Article  Google Scholar 

  9. Masayuki F, Junzo T, Shinichi S (1988) Planar faults and grain boundary precipitation in non-stoichiometric (Sr, Ca)TiO3 ceramics. Jpn J Appl Phys 27(7R):1162

    Google Scholar 

  10. Fujimoto M, Suzuki T, Nishi Y, Arai K, Tanaka J (1998) Calcium-ion selective site occupation at Ruddlesden-Popper-type faults and the resultant dielectric properties of a-site-excess strontium calcium titanate ceramics. J Am Ceram Soc 81(1):33–40

    Article  Google Scholar 

  11. Šturm S, Rečnik A, Scheu C, Čeh M (2000) Formation of Ruddlesden-Popper faults and polytype phases in SrO-doped SrTiO3. J Mater Res 15(10):2131–2139

    Article  Google Scholar 

  12. Šturm S, Rečnik A, Čeh M (2001) Nucleation and growth of planar faults in SrO-excess SrTiO3. J Eur Ceram Soc 21(10–11):2141–2144

    Google Scholar 

  13. Šturm S, Rečnik A, Kawasaki M, Yamazaki T, Watanabe K, Shiojiri M, Čeh M (2002) Experimental atomically resolved HAADF-STEM imaging—a parametric study. JEOL News 37(1):22

    Google Scholar 

  14. Šturm S, Shiojiri M, Čeh M (2009) Atomic-scale structural and compositional analyses of Ruddlesden-Popper planar faults in AO-excess SrTiO3 (A = Sr2+, Ca2+, Ba2+) ceramics. J Mater Res 24(08):2596–2604

    Article  Google Scholar 

  15. Ohta H, Kim S, Mune Y, Mizoguchi T, Nomura K, Ohta S, Nomura T, Nakanishi Y, Ikuhara Y, Hirano M, Hosono H, Koumoto K (2007) Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nat Mater 6(2):129–134

    Article  Google Scholar 

  16. Ohta S, Nomura T, Ohta H, Hirano M, Hosono H, Koumoto K (2005) Large thermoelectric performance of heavily Nb-doped SrTiO3 epitaxial film at high temperature. Appl Phys Lett 87(9):092108

    Article  Google Scholar 

  17. de Boor J, Stiewe C, Ziolkowski P, Dasgupta T, Karpinski G, Lenz E, Edler F, Mueller E (2013) High-temperature measurement of seebeck coefficient and electrical conductivity. J Electron Mater 42(7):1711–1718

    Article  Google Scholar 

  18. de Boor J, Müller E (2013) Data analysis for Seebeck coefficient measurements. Rev Sci Instrum 84(6):065102

    Article  Google Scholar 

  19. Lee KH, Kim SW, Ohta H, Koumoto K (2007) Thermoelectric properties of layered perovskite-type (Sr1−xCax)3(Ti1−yNby)2O7. J Appl Phys 101(8):083707

    Article  Google Scholar 

  20. Goldschmidt VM (1926) Die Gesetze der Krystallochemie. Naturwissenschaften 14(21):477–485

    Article  Google Scholar 

  21. Franz R, Wiedemann G (1853) Ueber die Wärme-Leitungsfähigkeit der Metalle. Ann Phys 165(8):497–531

    Article  Google Scholar 

  22. Fukuyado J, Narikiyo K, Akaki M, Kuwahara H, Okuda T (2012) Thermoelectric properties of the electron-doped perovskites Sr1−xCaxTi1−yNbyO3. Phys Rev B 85(7):075112

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Slovenian Research Agency (ARRS), project number PR-03768, and to the European Union Seventh Framework Programme [FP7/2007-2013] under grant agreement n°312483 (ESTEEM2), for the financial support of this work. Also, we would like to thank Silvo Zupančič for technical assistance in the high-temperature sintering, Medeja Gec and Andreja Šestan for TEM sample preparation, Werner Schönau for thermal conductivity measurements, and Paul McGuiness for proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marja Jerič.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jerič, M., de Boor, J., Zavašnik, J. et al. Lowering the thermal conductivity of Sr(Ti0.8Nb0.2)O3 by SrO and CaO doping: microstructure and thermoelectric properties. J Mater Sci 51, 7660–7668 (2016). https://doi.org/10.1007/s10853-016-0048-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0048-8

Keywords

Navigation