Journal of Materials Science

, Volume 51, Issue 17, pp 7899–7906 | Cite as

Effect of strong gravitational field on oriented crystalline perovskite-type manganese oxide La1−x Sr x MnO3

  • Makoto Tokuda
  • Tsutomu Mashimo
  • Jahirul Islam Khandaker
  • Yudai Ogata
  • Yoji Mine
  • Shinya Hayami
  • Akira Yoshiasa
Original Paper


We report the effect of a strong gravitational field on oriented crystalline perovskite-type manganese oxide La1−x Sr x MnO3 (LSMO). The perovskite-type manganese oxides La1−x Sr x MnO3 (LSMO) have been investigated for giant magnetoresistance (GMR) by controlling the hole-doping level (x). A strong gravitational field can change in crystalline state and the enhancement of usual diffusion. We subjected oriented crystalline La1−x Sr x MnO3 with different grain and grain-boundary (GBs) Sr concentrations to a strong gravitational field and investigated the resulting changes in the A-site cation diffusion and physical properties of the material. Electron probe micro-analysis (EPMA) results showed appearance of the GBs where the Sr concentration was quite high compared with in other GBs. The quantitative analysis at the grain and GBs indicated that cation diffusion was more enhanced than the annealed one. The temperature dependence of the magnetic susceptibility of the gravity samples changed with the Sr concentration in the grains. The temperature dependence of the resistivity curves of the gravity sample showed several abrupt changes, which corresponded to phase transitions at the grains and GBs, which may be caused by composition changes.


Resistivity Curve Cation Diffusion Susceptibility Curve Strong Gravitational Field Gravity Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank T. Matsui, graduated school of Science and Technology Kumamoto University, for providing us details of techniques about measurement of the temperature dependence of resistivity.


  1. 1.
    Kawada T, Yokokawa H (1996) Materials and characterization of solid oxide fuel cell. Key Eng Mater 125–126:187–248. doi: 10.4028/ Google Scholar
  2. 2.
    Hole I, Tybell T, Grepstad JH, Wærnhus I, Wiik K, Grande T (2003) High temperature transport kinetics in heteroepitaxial LaFeO3 thin films. Solid State Electrochem 47:2279–2282. doi: 10.1016/S0038-1101(03)00214-4 CrossRefGoogle Scholar
  3. 3.
    Sakai N, Yamaji K, Horita T, Negishi H, Yokokawa H (2000) Chromium diffusion in lanthanum chromites. Solid State Ionics 135:469–474. doi: 10.1016/S0167-2738(00)00401-X CrossRefGoogle Scholar
  4. 4.
    Matraszek A, Kobertz D, Singheiser L, Hilpert K, Kuncewicz-Kupczyk W, Miller M, Schulz O (2002) Thermodynamic and cation diffusion studies of perovskites on the basis of LaGaO3 and implications for SOFC. Mater Wiss Werkst Tech 33:355–362. doi: 10.1002/1521-4052(200206)33:6<355:AID-MAWE355>3.0.CO;2-G CrossRefGoogle Scholar
  5. 5.
    Schulz O, Martin M, Argirusis C, Borchardt G (2003) Cation tracer diffusion of 138La, 84Sr and 25Mg in polycrystalline La0.9Sr0.1Ga0.9Mg0.1O2.9. Phys Chem Chem Phys 5:2308–2313. doi: 10.1039/B301882M CrossRefGoogle Scholar
  6. 6.
    Sakai N, Yamaji K, Horita T, Brito ME, Yokokawa H (2003) 12th symposium on solid oxide fuel cells in japan extended abstract. The solid Oxide Fuel Cell Sociery of Japan, Tokyo, p 68Google Scholar
  7. 7.
    Akashi T, Nanko M, Maruyama T, Shiraishi Y (1998) Solid-state reaction kinetics of LaCrO3 from the oxides and determination of La3+ diuffsion coefficient. J Electrochem Soc 145:2090–2094. doi: 10.1149/1.1838601 CrossRefGoogle Scholar
  8. 8.
    Akashi T, Mizuno Y, Nanko M, Maruyama T, Saiki A, Tsukui K, Tanabe J (2001) Determination of diffusion coefficient of Nd3+ in NdCrO3 based on solid state reaction. Mater Trans 42:1411–1416. doi: 10.2320/matertrans.42.1411 CrossRefGoogle Scholar
  9. 9.
    Kawamura K, Saiki A, Maruyama T, Nagata K (1995) Diffusion coefficient of yttrium ion in YCrO3. J Electrochem Soc 142:3073–3077. doi: 10.1149/1.2048690 CrossRefGoogle Scholar
  10. 10.
    Wærnhus I, Sakai N, Yokokawa H, Grande T, Einarsrud MA, Wiik K (2007) Cation diffusion in La1-xSrxFeO3-δ, x = 0 and 0.1 measured by SIMS. Solid State Ionics 178:907–914. doi: 10.1016/j.ssi.2007.03.006 CrossRefGoogle Scholar
  11. 11.
    Kuwahara H, Tomioka Y, Asamitu A, Moritomo Y, Tokura Y (1995) A first-order phase transition induced by a magnetic field. Science 270:961–963. doi: 10.1126/science.270.5238.961 CrossRefGoogle Scholar
  12. 12.
    Urushibara A, Moritomo Y, Arima T, Asamitsu A, Kido G, Tokura Y (1995) Insulator-metal transition and giant magnetoresistance in La1−xSrxMnO3. Phys Rev B 51:103–109. doi: 10.1103/PhysRevB.51.14103 CrossRefGoogle Scholar
  13. 13.
    Tokura Y, Urushibara A, Moritomo Y, Arima T, Asamitsu A, Kido G, Furukawa N (1994) Giant magnetotransport phenomena in filling-controlled kondo lattice system: La1−xSrxMnO3. J Phys Soc Jpn 63:3931–3935. doi: 10.1143/JPSJ.63.3931 CrossRefGoogle Scholar
  14. 14.
    Moritomo Y, Asamitsu A, Tokura Y (1995) Pressure effect on the double-exchange ferromagnet La1−xSrxMnO3 (0.15 ≤ x≤0.5). Phys Rev B 51:491–494. doi: 10.1103/PhysRevB.51.16491 Google Scholar
  15. 15.
    Lofland SE, Patil SI, Bhagat SM, Arsenov AA, Karabashev SG, Mukovskii Y (2003) Magnetic study of phase separation and charge ordering in La1−xSrxMnO3 near x = 0.5. Solid State Commun 127:17–19. doi: 10.1016/S0038-1098(03)00347-8 CrossRefGoogle Scholar
  16. 16.
    Tokura Y, Tomioka Y (1999) Colossal magnetoresistive manganites. J Mag Mag Mat 200:1–23. doi: 10.1016/S0304-8853(99)00352-2 CrossRefGoogle Scholar
  17. 17.
    Mashimo T, Huang XS, Osakabe T, Ono M, Nishibara M, Ihara H, Sueyoshi M, Shibasaki K, Shibasaki S, Mori N (2003) Advanced high-temperature ultracentrifuge apparatus for mega-gravity materials science. Rev Sci Instr 74:160–163. doi: 10.1063/1.1527718 CrossRefGoogle Scholar
  18. 18.
    Mashimo T (1988) Self-consistent approach to the diffusion induced by a centrifugal field in condensed matter: Sedimentation. Phys Rev A 38:4149–4154. doi: 10.1103/PhysRevA.38.4149 CrossRefGoogle Scholar
  19. 19.
    Mashimo T, Ikeda T, Minato I (2001) Atomic-scale graded structure formed by sedimentation of substitutional atoms in a Bi-Sb alloy. J Appl Phys 90:741–745. doi: 10.1063/1.1381543 CrossRefGoogle Scholar
  20. 20.
    Huang XS, Mashimo T, Ono M, Tomita T, Sawai T, Osakabe T, Mori N (2004) Effects of ultrastrong gravitational field on the crystalline state of a Bi-Sb alloy. J Appl Phys 96:1336–1340. doi: 10.1063/1.1763236 CrossRefGoogle Scholar
  21. 21.
    Wolfensitne J, Goretta KC, Cook RE, Routbort JL (1996) Use of diffusional creep to investigate mass transport in (La, Sr)MnO3. Solid State Ionics 92:75–83. doi: 10.1016/S0167-2738(96)00461-4 CrossRefGoogle Scholar
  22. 22.
    Cahoon HP, Cristensen CJ (1956) Sintering and grain growth of alpha-alumina. J Am Ceram Soc 39:337–344. doi: 10.1111/j.1151-2916.1956.tb15599.x CrossRefGoogle Scholar
  23. 23.
    Burke JE (1957) Role of grain boundaries in sintering. J Am Ceram Soc 40:80–85. doi: 10.1111/j.1151-2916.1957.tb12580.x CrossRefGoogle Scholar
  24. 24.
    Hamberger J, Krimmel A, Kurz T, Krug von Nidda HA, Ivanov VY, Mukhin AA, Ballbashov AM, Loidl A (2002) Structural magnetic, and electrical properties of single-crystalline La1−xSr-xMnO3 (0.4 < x < 0.85). Phys Rev B 66:094410. doi: 10.1103/PhysRevB.66.094410
  25. 25.
    Patil SI, Bhagat SM, Shu QQ, Lofland SE, Ogale SB, Smolyaninova VN, Zhang X, Palmer BS, Decca RS, Brown FA, Drew HD, Green RL, Troyanchuk IO, McCarroll WH (2000) Indications of phase separation in polycrystalline La1−xSrxMnO3 for x ≈ 0.5. Phys Rev B 62:9548–9554. doi: 10.1103/PhysRevB.62.9548 CrossRefGoogle Scholar
  26. 26.
    Akimoto T, Maruyama Y, Moritomo Y, Nakamura A, Hirota K, Ohoyama K, Ohashi M (1998) Antiferromagnetic metallic state in doped manganites. Phys Rev B 57:R5594–R5597. doi: 10.1103/PhysRevB.57.R5594 CrossRefGoogle Scholar
  27. 27.
    Moritomo Y, Akimoto T, Nakamura A, Ohoyama K, Ohashi M (1998) Antiferromagnetic metallic state in the heavily doped region of perovskite manganites. Phys Rev B 58:5544–5549. doi: 10.1103/PhysRevB.58.5544 CrossRefGoogle Scholar
  28. 28.
    Hwang HY, Cheong SW, Ong NP, Batlogg B (1996) Spin-polarized intergrain tunneling in La2/3Sr1/3MnO3. Phys Rev Lett 77:2041–2044. doi: 10.1103/PhysRevLett.77.2041 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Makoto Tokuda
    • 1
  • Tsutomu Mashimo
    • 1
  • Jahirul Islam Khandaker
    • 1
  • Yudai Ogata
    • 2
  • Yoji Mine
    • 3
  • Shinya Hayami
    • 4
  • Akira Yoshiasa
    • 4
  1. 1.Institute of Pulsed Power ScienceKumamoto UniversityKumamotoJapan
  2. 2.Advanced Science Research Center, Japan Atomic Energy AgencyTokaiJapan
  3. 3.Faculty of EngineeringKumamoto UniversityKumamotoJapan
  4. 4.Faculty of ScienceKumamoto UniversityKumamotoJapan

Personalised recommendations