Skip to main content

Advertisement

Log in

Effect of strong gravitational field on oriented crystalline perovskite-type manganese oxide La1−x Sr x MnO3

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We report the effect of a strong gravitational field on oriented crystalline perovskite-type manganese oxide La1−x Sr x MnO3 (LSMO). The perovskite-type manganese oxides La1−x Sr x MnO3 (LSMO) have been investigated for giant magnetoresistance (GMR) by controlling the hole-doping level (x). A strong gravitational field can change in crystalline state and the enhancement of usual diffusion. We subjected oriented crystalline La1−x Sr x MnO3 with different grain and grain-boundary (GBs) Sr concentrations to a strong gravitational field and investigated the resulting changes in the A-site cation diffusion and physical properties of the material. Electron probe micro-analysis (EPMA) results showed appearance of the GBs where the Sr concentration was quite high compared with in other GBs. The quantitative analysis at the grain and GBs indicated that cation diffusion was more enhanced than the annealed one. The temperature dependence of the magnetic susceptibility of the gravity samples changed with the Sr concentration in the grains. The temperature dependence of the resistivity curves of the gravity sample showed several abrupt changes, which corresponded to phase transitions at the grains and GBs, which may be caused by composition changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Kawada T, Yokokawa H (1996) Materials and characterization of solid oxide fuel cell. Key Eng Mater 125–126:187–248. doi:10.4028/www.science.net/KEM.125-126.187

    Google Scholar 

  2. Hole I, Tybell T, Grepstad JH, Wærnhus I, Wiik K, Grande T (2003) High temperature transport kinetics in heteroepitaxial LaFeO3 thin films. Solid State Electrochem 47:2279–2282. doi:10.1016/S0038-1101(03)00214-4

    Article  Google Scholar 

  3. Sakai N, Yamaji K, Horita T, Negishi H, Yokokawa H (2000) Chromium diffusion in lanthanum chromites. Solid State Ionics 135:469–474. doi:10.1016/S0167-2738(00)00401-X

    Article  Google Scholar 

  4. Matraszek A, Kobertz D, Singheiser L, Hilpert K, Kuncewicz-Kupczyk W, Miller M, Schulz O (2002) Thermodynamic and cation diffusion studies of perovskites on the basis of LaGaO3 and implications for SOFC. Mater Wiss Werkst Tech 33:355–362. doi:10.1002/1521-4052(200206)33:6<355:AID-MAWE355>3.0.CO;2-G

    Article  Google Scholar 

  5. Schulz O, Martin M, Argirusis C, Borchardt G (2003) Cation tracer diffusion of 138La, 84Sr and 25Mg in polycrystalline La0.9Sr0.1Ga0.9Mg0.1O2.9. Phys Chem Chem Phys 5:2308–2313. doi:10.1039/B301882M

    Article  Google Scholar 

  6. Sakai N, Yamaji K, Horita T, Brito ME, Yokokawa H (2003) 12th symposium on solid oxide fuel cells in japan extended abstract. The solid Oxide Fuel Cell Sociery of Japan, Tokyo, p 68

    Google Scholar 

  7. Akashi T, Nanko M, Maruyama T, Shiraishi Y (1998) Solid-state reaction kinetics of LaCrO3 from the oxides and determination of La3+ diuffsion coefficient. J Electrochem Soc 145:2090–2094. doi:10.1149/1.1838601

    Article  Google Scholar 

  8. Akashi T, Mizuno Y, Nanko M, Maruyama T, Saiki A, Tsukui K, Tanabe J (2001) Determination of diffusion coefficient of Nd3+ in NdCrO3 based on solid state reaction. Mater Trans 42:1411–1416. doi:10.2320/matertrans.42.1411

    Article  Google Scholar 

  9. Kawamura K, Saiki A, Maruyama T, Nagata K (1995) Diffusion coefficient of yttrium ion in YCrO3. J Electrochem Soc 142:3073–3077. doi:10.1149/1.2048690

    Article  Google Scholar 

  10. Wærnhus I, Sakai N, Yokokawa H, Grande T, Einarsrud MA, Wiik K (2007) Cation diffusion in La1-x Sr x FeO3-δ , x = 0 and 0.1 measured by SIMS. Solid State Ionics 178:907–914. doi:10.1016/j.ssi.2007.03.006

    Article  Google Scholar 

  11. Kuwahara H, Tomioka Y, Asamitu A, Moritomo Y, Tokura Y (1995) A first-order phase transition induced by a magnetic field. Science 270:961–963. doi:10.1126/science.270.5238.961

    Article  Google Scholar 

  12. Urushibara A, Moritomo Y, Arima T, Asamitsu A, Kido G, Tokura Y (1995) Insulator-metal transition and giant magnetoresistance in La1−x Sr x MnO3. Phys Rev B 51:103–109. doi:10.1103/PhysRevB.51.14103

    Article  Google Scholar 

  13. Tokura Y, Urushibara A, Moritomo Y, Arima T, Asamitsu A, Kido G, Furukawa N (1994) Giant magnetotransport phenomena in filling-controlled kondo lattice system: La1−x Sr x MnO3. J Phys Soc Jpn 63:3931–3935. doi:10.1143/JPSJ.63.3931

    Article  Google Scholar 

  14. Moritomo Y, Asamitsu A, Tokura Y (1995) Pressure effect on the double-exchange ferromagnet La1−x Sr x MnO3 (0.15 ≤ x≤0.5). Phys Rev B 51:491–494. doi:10.1103/PhysRevB.51.16491

    Google Scholar 

  15. Lofland SE, Patil SI, Bhagat SM, Arsenov AA, Karabashev SG, Mukovskii Y (2003) Magnetic study of phase separation and charge ordering in La1−x Sr x MnO3 near x = 0.5. Solid State Commun 127:17–19. doi:10.1016/S0038-1098(03)00347-8

    Article  Google Scholar 

  16. Tokura Y, Tomioka Y (1999) Colossal magnetoresistive manganites. J Mag Mag Mat 200:1–23. doi:10.1016/S0304-8853(99)00352-2

    Article  Google Scholar 

  17. Mashimo T, Huang XS, Osakabe T, Ono M, Nishibara M, Ihara H, Sueyoshi M, Shibasaki K, Shibasaki S, Mori N (2003) Advanced high-temperature ultracentrifuge apparatus for mega-gravity materials science. Rev Sci Instr 74:160–163. doi:10.1063/1.1527718

    Article  Google Scholar 

  18. Mashimo T (1988) Self-consistent approach to the diffusion induced by a centrifugal field in condensed matter: Sedimentation. Phys Rev A 38:4149–4154. doi:10.1103/PhysRevA.38.4149

    Article  Google Scholar 

  19. Mashimo T, Ikeda T, Minato I (2001) Atomic-scale graded structure formed by sedimentation of substitutional atoms in a Bi-Sb alloy. J Appl Phys 90:741–745. doi:10.1063/1.1381543

    Article  Google Scholar 

  20. Huang XS, Mashimo T, Ono M, Tomita T, Sawai T, Osakabe T, Mori N (2004) Effects of ultrastrong gravitational field on the crystalline state of a Bi-Sb alloy. J Appl Phys 96:1336–1340. doi:10.1063/1.1763236

    Article  Google Scholar 

  21. Wolfensitne J, Goretta KC, Cook RE, Routbort JL (1996) Use of diffusional creep to investigate mass transport in (La, Sr)MnO3. Solid State Ionics 92:75–83. doi:10.1016/S0167-2738(96)00461-4

    Article  Google Scholar 

  22. Cahoon HP, Cristensen CJ (1956) Sintering and grain growth of alpha-alumina. J Am Ceram Soc 39:337–344. doi:10.1111/j.1151-2916.1956.tb15599.x

    Article  Google Scholar 

  23. Burke JE (1957) Role of grain boundaries in sintering. J Am Ceram Soc 40:80–85. doi:10.1111/j.1151-2916.1957.tb12580.x

    Article  Google Scholar 

  24. Hamberger J, Krimmel A, Kurz T, Krug von Nidda HA, Ivanov VY, Mukhin AA, Ballbashov AM, Loidl A (2002) Structural magnetic, and electrical properties of single-crystalline La1−x Sr- x MnO3 (0.4 < x < 0.85). Phys Rev B 66:094410. doi:10.1103/PhysRevB.66.094410

  25. Patil SI, Bhagat SM, Shu QQ, Lofland SE, Ogale SB, Smolyaninova VN, Zhang X, Palmer BS, Decca RS, Brown FA, Drew HD, Green RL, Troyanchuk IO, McCarroll WH (2000) Indications of phase separation in polycrystalline La1−x Sr x MnO3 for x ≈ 0.5. Phys Rev B 62:9548–9554. doi:10.1103/PhysRevB.62.9548

    Article  Google Scholar 

  26. Akimoto T, Maruyama Y, Moritomo Y, Nakamura A, Hirota K, Ohoyama K, Ohashi M (1998) Antiferromagnetic metallic state in doped manganites. Phys Rev B 57:R5594–R5597. doi:10.1103/PhysRevB.57.R5594

    Article  Google Scholar 

  27. Moritomo Y, Akimoto T, Nakamura A, Ohoyama K, Ohashi M (1998) Antiferromagnetic metallic state in the heavily doped region of perovskite manganites. Phys Rev B 58:5544–5549. doi:10.1103/PhysRevB.58.5544

    Article  Google Scholar 

  28. Hwang HY, Cheong SW, Ong NP, Batlogg B (1996) Spin-polarized intergrain tunneling in La2/3Sr1/3MnO3. Phys Rev Lett 77:2041–2044. doi:10.1103/PhysRevLett.77.2041

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank T. Matsui, graduated school of Science and Technology Kumamoto University, for providing us details of techniques about measurement of the temperature dependence of resistivity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsutomu Mashimo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tokuda, M., Mashimo, T., Khandaker, J.I. et al. Effect of strong gravitational field on oriented crystalline perovskite-type manganese oxide La1−x Sr x MnO3 . J Mater Sci 51, 7899–7906 (2016). https://doi.org/10.1007/s10853-016-0045-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0045-y

Keywords

Profiles

  1. Yoji Mine
  2. Shinya Hayami