Skip to main content
Log in

Improved ferromagnetic behavior and novel near-infrared photoluminescence in Mg/Mn-codoped CuCrO2 ceramics

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Cu(Cr0.96−x Mg0.04Mn x )O2−δ ceramics (0 ≤ x ≤ 15 at.%) were prepared by solid-state reaction. The influence of Mg acceptor codoping on microstructure, magnetic, and optical properties was studied. The codoping with Mg acceptors and the resulting lattice expansion are both favorable for the enhancement of hole density. Furthermore, the lower valence of Mg2+ compared with Cr3+ enables the mixed valence state of Mn ions: Mn3+ and Mn4+, and hence induces the hole-mediated double-exchange mechanism not only between Mn3+ and Cr3+ but also between Mn3+ and Mn4+. The coexistence of two ferromagnetic interactions and the high hole density are responsible for the improved saturation magnetization and Curie temperature. For photoluminescence, an unusual near-infrared emission at 1.5 eV is observed in the Mn-contained samples and can be attributed to the internal transition between the e and t 2 states of the Mn3+ impurity band. The emission intensity is primarily affected by two factors: the Mn3+ concentration and the position of the Fermi level. The results show that codoping with Mg acceptors is an effective way to strengthen the hole-mediated ferromagnetic interactions in CuCrO2 delafossite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Benecha EM, Lombardi EB (2013) First principles study of Fe in diamond: a diamond-based half metallic dilute magnetic semiconductor. J Appl Phys 114:223703

    Article  Google Scholar 

  2. Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D (2000) Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287:1019–1022

    Article  Google Scholar 

  3. Sato K, Katayama-Yoshida H (2000) Material design for transparent ferromagnets with ZnO-based magnetic semiconductors. Jpn J Appl Phys 39:L555–L558

    Article  Google Scholar 

  4. Dietl T (2002) Ferromagnetic semiconductors. Semicond Sci Technol 17:377–392

    Article  Google Scholar 

  5. Amami M, Jlaiel F, Strobel P, Salah AB (2011) Synthesis, structural and magnetic studies of the CuCr1−x Rh x O2 delafossite solid solution with 0 ≤ x ≤ 0.2. Mater Res Bull 46:1729–1733

    Article  Google Scholar 

  6. Jlaiel F, Amami M, Boudjada N, Strobel P, Salah AB (2011) Metal transition doping effect on the structural and physical properties of delafossite-type oxide CuCrO2. J Alloys Compd 509:7784–7788

    Article  Google Scholar 

  7. Elkhouni T, Amami M, Strobel P, Salah AB (2015) Evidence of development of new spin orders benefiting to enhance magnetic properties in Co2+-doped delafossite-type oxide CuCrO2. J Supercond Nov Magn 28:1–8

    Article  Google Scholar 

  8. Elkhouni T, Amami M, Colin CV, Strobel P, Salah AB (2013) Synthesis, structural and magnetic studies of the CuCr1−x Co x O2 delafossite oxide. J Magn Magn Mater 330:101–105

    Article  Google Scholar 

  9. Amami M, Colin CV, Strobel P, Salah AB (2011) Al-doping effect on the structural and physical properties of delafossite-type oxide CuCrO2. Physica B 406:2182–2185

    Article  Google Scholar 

  10. Luo SJ, Li L, Wang KF, Li SZ, Dong XW, Yan ZB, Liu JM (2010) Enhanced magnetic and ferroelectric properties of multiferroic CuCrO2 by Ni-doping. Thin Solid Films 518:e50–e53

    Article  Google Scholar 

  11. Luo SJ, Wang KF, Li SZ, Dong XW, Yan ZB, Cai HL, Liu JM (2009) Enhanced ferromagnetism and ferroelectricity in multiferroic CuCr1−x Ni x O2. Appl Phys Lett 94:172504

    Article  Google Scholar 

  12. Li D, Fang XD, Dong WW, Deng ZH, Tao RH, Zhou S, Wang JM, Wang T, Zhao YP, Zhu XB (2009) Magnetic and electrical properties of p-type Mn-doped CuCrO2 semiconductors. J Phys D Appl Phys 42:055009

    Article  Google Scholar 

  13. Nagarajan R, Draeseke AD, Sleight AW, Tate J (2001) P-Type conductivity in CuCr1−x Mg x O2 films and powders. J Appl Phys 89:8022–8025

    Article  Google Scholar 

  14. Kim KH, Lee KJ, Kim DJ, Kim HJ, Ihm YE, Kim CG, Yoo SH, Kim CS (2003) Enhanced carrier-mediated ferromagnetism in GaMnN by codoping of Mg. Appl Phys Lett 82:4755–4757

    Article  Google Scholar 

  15. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767

    Article  Google Scholar 

  16. Kato S, Kawashima R, Ogasawara M (2015) Oxygen storage-release behavior of delafossite-type CuCr1−x M x O2 (M = Fe, Ga). J Mater Sci 50:2876–2883

    Article  Google Scholar 

  17. Wagner CD, Riggs WM, Davis LE, Moulder JF, Muilenberg GE (eds) (1979) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, Eden Prairie

    Google Scholar 

  18. Chuai YH, Wang X, Shen HZ, Li YD, Zheng CT, Wang YD (2016) Effects of Zn-doping on structure and electrical properties of p-type conductive CuCr1−x Zn x O2 delafossite oxide. J Mater Sci 51:3592–3599

    Article  Google Scholar 

  19. Lu WJ, Sun YP, Ang R, Zhu XB, Song WH (2007) Effect of Mo substitution in the n = 3 Ruddlesden-Popper compound Ca4Mn3O10. Phys Rev B 75:014414

    Article  Google Scholar 

  20. Banerjee AN, Ghosh CK, Chattopadhyay KK (2005) Effect of excess oxygen on the electrical properties of transparent p-type conducting CuAlO2+x thin films. Sol Energy Mater Sol Cells 89:75–83

    Article  Google Scholar 

  21. Li D, Fang XD, Zhao AW, Deng ZH, Dong WW, Tao RH (2010) Physical properties of CuCrO2 films prepared by pulsed laser deposition. Vacuum 84:851–856

    Article  Google Scholar 

  22. Bensaid S, Russo N (2011) Low temperature DPF regeneration by delafossite catalysts. Catal Today 176:417–423

    Article  Google Scholar 

  23. Dong H, Li ZH, Xu XM, Ding ZX, Wu L, Wang XX, Fu XZ (2009) Visible light-induced photocatalytic activity of delafossite AgMO2 (M = Al, Ga, In) prepared via a hydrothermal method. Appl Catal B: Environ 89:551–556

    Article  Google Scholar 

  24. Ibrahim F, Wilson JIB, John P (1995) Photo-oxidation of a-Si:C:H studied by in situ XPS. J Non-Cryst Solids 191:200–204

    Article  Google Scholar 

  25. Payne BP, Biesinger MC, McIntyre NS (2012) Use of oxygen/nickel ratios in the XPS characterisation of oxide phases on nickel metal and nickel alloy surfaces. J Electron Spectrosc Relat Phenom 185:159–166

    Article  Google Scholar 

  26. Kaya İC, Sevindik MA, Akyıldız H (2016) Characteristics of Fe- and Mg-doped CuCrO2 nanocrystals prepared by hydrothermal synthesis. J Mater Sci Mater Electron 27:2404–2411

    Article  Google Scholar 

  27. Bywalez R, Götzendörfer S, Löbmann P (2010) Structural and physical effects of Mg-doping on p-type CuCrO2 and CuAl0.5Cr0.5O2 thin films. J Mater Chem 20:6562–6570

    Article  Google Scholar 

  28. Liu L, Bai K, Gong H, Wu P (2005) First-principles study of Sn and Ca doping in CuInO2. Phys Rev B 72:125204

    Article  Google Scholar 

  29. Nepal N, Mahros AM, Bedair SM, El-Masry NA, Zavada JM (2007) Correlation between photoluminescence and magnetic properties of GaMnN films. Appl Phys Lett 91:242502

    Article  Google Scholar 

  30. Graf T, Gjukic M, Brandt MS, Stutzmann M, Ambacher O (2002) The Mn3+/2+ acceptor level in group III nitrides. Appl Phys Lett 81:5159–5161

    Article  Google Scholar 

  31. Han B, Korotkov RY, Wessels BW, Ulmer MP (2004) Optical properties of Mn4+ ions in GaN:Mn codoped with Mg acceptors. Appl Phys Lett 84:5320–5322

    Article  Google Scholar 

  32. Maier R, Cohn JL (2002) Ferroelectric and ferrimagnetic iron-doped thin-film BaTiO3: influence of iron on physical properties. J Appl Phys 92:5429–5436

    Article  Google Scholar 

  33. Elkhouni T, Amami M, Colin CV, Strobel P, Salah AB (2014) The structure, Raman spectroscopy and evidence of ferromagnetic transition in CuCr1−x M x O2 (M = Mn and Rh) compounds. J Magn Magn Mater 355:158–163

    Article  Google Scholar 

  34. Kolesnik S, Dabrowski B (2004) Absence of room temperature ferromagnetism in bulk Mn-doped ZnO. J Appl Phys 96:5379–5381

    Article  Google Scholar 

  35. Sun Y, Wei T, Xu XJ, Zhang YH (2001) Tuning colossal magnetoresistance response by Cr substitution in La0.67Sr0.33MnO3. Appl Phys Lett 78:643–645

    Article  Google Scholar 

  36. Wang J, Neaton JB, Zheng H, Nagarajan V, Ogale SB, Liu B, Viehland D, Vaithyanathan V, Schlom DG, Waghmare UV, Spaldin NA, Rabe KM, Wuttig M, Ramesh R (2003) Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299:1719–1722

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge financial assistances from Natural Science Foundation of Shanghai (No. 16ZR1424300), National Natural Science Foundation of China (Nos. 11004134 and 61007055), Innovation Program of Shanghai Municipal Education Commission (No. 13YZ064), Program of Shanghai Normal University (No. DXL121), Key Project of Chinese Ministry of Education (No. 212050), Key Project of Shanghai Municipal Education Commission (No. 12ZZ133), Funding of Shanghai Pujiang Program (No. 15PJ1406500), Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, China, and Research Funding of Shanghai Normal University (No. SK201529).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangting Lin.

Ethics declarations

Conflicts of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, L., Lin, F., Yu, Q. et al. Improved ferromagnetic behavior and novel near-infrared photoluminescence in Mg/Mn-codoped CuCrO2 ceramics. J Mater Sci 51, 7491–7501 (2016). https://doi.org/10.1007/s10853-016-0028-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0028-z

Keywords

Navigation