Skip to main content

First-principles investigation of electronic properties of Al x In1−x P semiconductor alloy

Abstract

The modified Becke–Johnson (MBJ) exchange potential together with correlation part of M06 Minnesota functional was used to obtain accurate band structure profile for Al x In1−x P ternary semiconductor alloy. The effective band structures of alloys were calculated using spectral weight approach, and the composition dependence of the fundamental gap energy, critical point energies and electron effective masses were estimated from the weighted average of effective band structures. The results of the supercell calculations for energy gap and bowing parameter are in good agreement with experiments. The results also show that crossover point of (Γ–Γ) direct to (Γ–x) indirect gap energies occurs at x = 0.48, which is consistent with experimental findings. Furthermore, our results show that the combination of MBJ exchange and M06 correlation potential can be used to estimate accurate band structure profile for AlP, InP, and their alloys.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

References

  1. 1

    Hassan M, Larson LE, Leung VW, Kimball DF, Asbeck PM (2012) A wideband CMOS/GaAs HBT envelope tracking power amplifier for 4G LTE mobile terminal applications. IEEE Trans Micro Theory Tech 60:1321–1330

    Article  Google Scholar 

  2. 2

    Hjort K (1996) Sacrificial etching of III–V compounds for micromechanical devices. J Micromech Microeng 6:370–375

    Article  Google Scholar 

  3. 3

    Bertulis K, Krotkus A, Aleksejenko G, PacÌebutas V, AdomavicÌius R, Molis G, MarcinkevicÌius S (2006) GaBiAs: a material for optoelectronic terahertz devices. Appl Phys Lett 88:201112

    Article  Google Scholar 

  4. 4

    Tseng CY, Lee CT (2013) Improved performance mechanism of III–V compound triple-junction solar cell using hybrid electrode structure. Sol Energy 89:17–22

    Article  Google Scholar 

  5. 5

    Munns GO, Chen WL, Sherwin ME, Haddad GI (1993) The growth of InA1P using trimethylamine alane by chemical beam epitaxy. J Cryst Growth 127:226–229

    Article  Google Scholar 

  6. 6

    Ishitani Y, Hamada H, Minagawa S, Yaguchi H, Shiraki Y (1997) The Γc–Γv transition energies of Al x In1−x P alloys. Jpn J Appl Phys 36:6607–6613

    Article  Google Scholar 

  7. 7

    Bour DP, Shealy JR, Wicks GW, Schaff WJ (1987) Optical properties of Al x In1−x P grown by organometallic vapor phase epitaxy. Appl Phys Lett 50:615–617

    Article  Google Scholar 

  8. 8

    Dai P, Tan M, Wu YY, Ji L, Bian LF, Lu SL, Yang H (2015) Solid-state tellurium doping of AlInP and its application to photovoltaic devices grown by molecular beam epitaxy. J Cryst Growth 413:71–75

    Article  Google Scholar 

  9. 9

    Hung CT, Huang SC, Lu TC (2014) Effect of passivation layers on characteristics of AlGaInP ridge waveguide laser diodes. Opt Laser Technol 59:110–115

    Article  Google Scholar 

  10. 10

    Christian TM, Beaton DA, Mukherjee K, Alberi K, Fitzgerald EA, Mascarenhas A (2013) Amber-green light-emitting diodes using order-disorder Al x In1−x P heterostructures. J Appl Phys 114:074505

    Article  Google Scholar 

  11. 11

    Tukiainen A, Toikkanen L, Haavisto M, Erojärvi V, Rimpiläinen V, Viheriälä J, Pessa M (2006) AlInP–AlGaInP quantum-well lasers grown by molecular beam epitaxy. IEEE Photon Technol Lett 18:2257

    Article  Google Scholar 

  12. 12

    Zhang YG, Li C, Gu Y, Wang K, Li H, Shao XM, Fang JX (2010) GaInP–AlInP–GaAs blue photovoltaic detectors with narrow response wavelength width. IEEE Photon Technol Lett 22:944

    Article  Google Scholar 

  13. 13

    Wojtczuk SJ, Vernon SM, Sanfacon MM (1993) Comparison of windows for P-on-N InGaP solar cells. In: 23rd IEEE photovoltaic Specialists conference, Piscataway, pp 655–658

  14. 14

    Chiang PK, Vijayakumar PS, Cavicchi BT (1993) Large area GaInPp/GaAs tandem cell development for space power systems. In: 23rd IEEE photovoltaic Specialists conference, Louisville, p 659

  15. 15

    Jinghua Z, Xiaohong T, Jinghua T (2009) Atomic ordering of AlInP grown by MOVPE at different temperatures inpure ambient N2. Cryst Eng Commun 11:1068–1072

    Article  Google Scholar 

  16. 16

    Kim TJ, Hwang SY, Byun JS, Aspnes DE, Lee EH, Song JD, Liang CT, Chang YC, Park HG, Choi J, Kim JY, Kang YR, Park JC, Kim YD (2014) Dielectric functions and interband transitions of In x Al1−x P alloys. Curr Appl Phys 14:1273–1276

    Article  Google Scholar 

  17. 17

    Onton A, Chicotka RJ (1970) Conduction Bands in In x Al1−x P. J Appl Phys 41:4205

    Article  Google Scholar 

  18. 18

    Ferhat M (2004) Computational optical band gap bowing of III–V semiconductors alloys. Phys Status Solidi (b) 241:R38–R41

    Article  Google Scholar 

  19. 19

    Ameri M, Bentouaf A, Doui-Aici M, Khenata R, Boufadi F, Touia A (2011) Structural and electronic properties calculations of Al x In1−x P alloy. Mater Sci Appl 2:729–738

    Google Scholar 

  20. 20

    Ma CG, Krasnenko V, Brik MG (2015) An ab initio study of the direct–indirect band gap transition in Al x In1−x P alloys. Solid State Commun 205:55–60

    Article  Google Scholar 

  21. 21

    Vurgaftman I, Meyer JR, Ram-Mohan LR (2001) Band parameters for III–V compound semiconductors and their alloys. J Appl Phys 89:5815–5875

    Article  Google Scholar 

  22. 22

    Beaton DA, Christian T, Alberi K, Mascarenhas A, Mukherjee K, Fitzgerald EA (2013) Determination of the direct to indirect bandgap transition composition in Al x In1−x P. J Appl Phys 114:203504

    Article  Google Scholar 

  23. 23

    Rochon P, Fortin F (1975) Photovoltaic effect and interband magneto-optical transitions in InP. Phys Rev B 12:5803

    Article  Google Scholar 

  24. 24

    Adachi S (2009) Properties of semiconductor alloys: group-IV, III–V and II–VI semiconductors, 1st edn. Wiley, Chichester

    Book  Google Scholar 

  25. 25

    Ma CG, Krasnenko V, Brik MG (2015) An ab initio study of the “direct–indirect band gap” transition in Al x In1−x P alloys. Solid State Commun 205:55–60

    Article  Google Scholar 

  26. 26

    Ferhat M (2004) Computational optical band gap bowing of III–V semiconductors alloys. Phys Status Solidi (b) 241:R38–R41

    Article  Google Scholar 

  27. 27

    Nørdheim L (1931) Zur Elektronentheorie der Metalle I. Ann Phys (Leipzig) 9:607

    Article  Google Scholar 

  28. 28

    Muto T (1938) On the electronic structure of alloys. Sci Pap Inst Phys Chem Res (Jpn) 34:377

    Google Scholar 

  29. 29

    Bellaiche L, Vanderbilt D (2000) Virtual crystal approximation revisited: application to dielectric and piezoelectric properties of perovskites. Phys Rev B 61:7877

    Article  Google Scholar 

  30. 30

    Zunger A, Wei SH, Ferreira LG, Bernard JE (1990) Special quasirandom structures. Phys Rev Lett 65:353

    Article  Google Scholar 

  31. 31

    Nicklas JW, Wilkins JW (2010) Accurate ab initio predictions of III–V direct-indirect band gap crossovers. Appl Phys Lett 97:091902

    Article  Google Scholar 

  32. 32

    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133

    Article  Google Scholar 

  33. 33

    Gonze X, Amadon B, Anglade P, Beuken JM, Bottin F, Boulanger P, Bruneval F, Caliste D, Caracas R, Cote M et al (2009) Abinit: first-principles approach to material and nano-system properties. Comput Phys Commun 180:2582

    Article  Google Scholar 

  34. 34

    OPIUM pseudopotential code. http://opium.sourceforge.net

  35. 35

    Rappe AM, Rabe KM, Kaxiras E, Joannopoulos JD (1990) Optimized pseudopotentials. Phys Rev B 41:1227

    Article  Google Scholar 

  36. 36

    Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244

    Article  Google Scholar 

  37. 37

    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  Google Scholar 

  38. 38

    Tran F, Blaha P (2009) Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys Rev Lett 102:226401

    Article  Google Scholar 

  39. 39

    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements. Theor Chem Acc 120:215

    Article  Google Scholar 

  40. 40

    Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188

    Article  Google Scholar 

  41. 41

    Medeiros PVC, Stafström S, Björk J (2014) Effects of extrinsic and intrinsic perturbations on the electronic structure of graphene: retaining an effective primitive cell band structure by band unfolding. Phys Rev B 89:041407

    Article  Google Scholar 

  42. 42

    Medeiros PVC, Tsirkin SS, Stafström S, Björk J (2015) Unfolding spinor wave functions and expectation values of general operators: introducing the unfolding-density operator. Phys Rev B 91:041116

    Article  Google Scholar 

  43. 43

    Kim YS, Marsman M, Kresse G, Tran F, Blaha P (2010) Towards efficient band structure and effective mass calculations for III-V direct band-gap semiconductors. Phys Rev B 82:205212

    Article  Google Scholar 

  44. 44

    Heyd J, Peralta JE, Scuseria GE, Martin RL (2005) Energy band gaps and lattice parameters evaluated with the Heyd–Scuseria–Ernzerhof screened hybrid functional. J Chem Phys 123:174101

    Article  Google Scholar 

  45. 45

    Brust D, Cohen ML, Phillips JC (1962) Reflectance and photoemission from Si. Phys Rev Lett 9:389

    Article  Google Scholar 

  46. 46

    Ehrenreich H, Philipp HR, Phillips JC (1962) Interband transitions in groups 4, 3-5, and 2-6 semiconductors. Phys Rev Lett 8:59

    Article  Google Scholar 

  47. 47

    Williams GP, Cerrina F, Anderson J, Lapeyre GJ, Smith RJ (1983) Study of III–V semiconductor band structure by synchrotron photoemission. Physica 117B &118B:350–352

    Google Scholar 

  48. 48

    Denton AR, Ashcroft NW (1991) Vegard’s law. Phys Rev A 43:3161

    Article  Google Scholar 

  49. 49

    Moser M, Wienterhoff R, Geng C, Quisser J, Scholz F, Dörden A (1994) Refractive index of (AlxGa1−x)0.5In0.5P grown by metalorganic vapor phase epitaxy. Appl Phys Lett 64:235–238

    Article  Google Scholar 

  50. 50

    Huang M, Ching WY (1985) A minimal basis semi-ab initio approach to the band structures of semiconductors. J Phys Chem Solids 46:977

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Paulo V. C. Medeiros and his co-workers for their BandUP code.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Arash Abdollahi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abdollahi, A., Golzan, M.M. & Aghayar, K. First-principles investigation of electronic properties of Al x In1−x P semiconductor alloy. J Mater Sci 51, 7343–7354 (2016). https://doi.org/10.1007/s10853-016-0022-5

Download citation

Keywords

  • Local Density Approximation
  • Absolute Percentage Error
  • Conduction Band Minimum
  • Bowing Parameter
  • Supercell Calculation