Skip to main content
Log in

Thermal and mechanical properties of epoxy composite filled with binary particle system of polygonal aluminum oxide and boron nitride platelets

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The increased heat generated in high-density electronics has intensified the search for advanced thermal management solutions. This urge has prompted fundamental studies on various filler-filled polymer composites with enhanced thermal performance. This research is intended to attain better understanding on the effect of particle sizes and geometry of fillers with different ratios of composition on the thermal and mechanical properties of hybrid composite system. It investigates the effect of combining polygonal aluminum oxide (Al2O3) and boron nitride (BN) platelets to enhance the thermal conductivity of epoxy composite. The surface of the two fillers was functionalized with aminopropyltriethoxysilane (KH550), thereby reducing the thermal interfacial resistance between filler and matrix. It was observed that there is no significant difference in the thermal and mechanical performance between BN1µm and BN5µm filler-filled composites. However, at filler loading of 30 wt%, the Al2O3 and BN1µm hybrid filler system (ratio 5:5) provided significant enhancement of maximum thermal conductivity of 0.57 Wm−1 K−1 compared to 0.17 Wm−1 K−1 that of neat epoxy. This synergistic effect results from the bridging of BN platelets between the Al2O3 particles facilitating the formation of effective thermal conductance network within the epoxy matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Donnay M, Tzavalas S, Logakis E (2015) Boron nitride filled epoxy with improved thermal conductivity and dielectric breakdown strength. Compos Sci Technol 110:152–158

    Article  Google Scholar 

  2. Dittanet P, Pearson RA (2012) Effect of silica nanoparticle size on toughening mechanisms of filled epoxy. Polymer 53:1890–1905

    Article  Google Scholar 

  3. Sebastian MT, Jantunen H (2010) Polymer-ceramic composites of 0–3 connectivity for circuits in electronics: a review. Int J Appl Ceram Technol 7:415–434

    Google Scholar 

  4. Boudenne A, Ibos L, Fois M, Majesté JC, Géhin E (2005) Electrical and thermal behaviour of polypropylene filled with copper particles. Compos Part A—Appl S 36:1545–1554

    Article  Google Scholar 

  5. Anithambigai P, Shanmugan S, Mutharasu D, Zahner T, Lacey D (2014) Study on thermal performance of high power LED employing aluminum filled epoxy composite as thermal interface material. Microelectron J 45:1726–1733

    Article  Google Scholar 

  6. Yu YH, Ma CCM, Teng C-C, Huang YL, Tien HW, Lee SH, Wang I (2013) Enhanced thermal and mechanical properties of epoxy composites filled with silver nanowires and nanoparticles. J Taiwan Inst Chem Eng 44:654–659

    Article  Google Scholar 

  7. Qiao W, Bao H, Li X, Jin S, Gu Z (2014) Research on electrical conductive adhesives filled with mixed filler. Int J Adhes Adhes 48:159–163

    Article  Google Scholar 

  8. Chung DDL (2001) Materials for thermal conduction. Appl Therm Eng 21:1593–1605

    Article  Google Scholar 

  9. Park JG, Cheng Q, Lu J, Bao J, Li S, Tian Y, Liang Z, Zhang C, Wang B (2012) Thermal conductivity of MWCNT/epoxy composites: the effects of length, alignment and functionalization. Carbon 50:2083–2090

    Article  Google Scholar 

  10. Huang J, Gao M, Pan T, Zhang Y, Lin Y (2014) Effective thermal conductivity of epoxy matrix filled with poly(ethyleneimine) functionalized carbon nanotubes. Compos Sci Technol 95:16–20

    Article  Google Scholar 

  11. Lee JH, Rhee KY, Park SJ (2011) Silane modification of carbon nanotubes and its effects on the material properties of carbon/CNT/epoxy three-phase composites. Compos Part A—Appl Sci Manuf 42:478–483

    Article  Google Scholar 

  12. Ma PC, Siddiqui NA, Marom G, Kim JK (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos Part A—Appl Sci Manuf S41:1345–1367

    Article  Google Scholar 

  13. Kume S, Yamada I, Watari K, Harada I, Mitsuishi K (2009) High-thermal-conductivity AlN filler for polymer/ceramics composites. J Am Ceram Soc 92:S153–S156

    Article  Google Scholar 

  14. Xu Y, Chung DDL (2000) Increasing the thermal conductivity of boron nitride and aluminum nitride particle epoxy-matrix composites by particle surface treatments. Compos Interface 7:243–256

    Article  Google Scholar 

  15. Chen CH, Jian JY, Yen FS (2009) Preparation and characterization of epoxy/γ-aluminum oxide nanocomposites. Compos Part A—Appl Sci Manuf 40:463–468

    Article  Google Scholar 

  16. Geoffrey Pritchard, Novel and traditional fillers for plastics, Technology and Market Development. October 1999. Rapra technology Limited

  17. Seran C, Kim JH (2013) Thermal conductivity of epoxy composites with a binary-particle system of aluminum oxide and aluminum nitride fillers. Compos Part B—Eng 51:140–147

    Article  Google Scholar 

  18. Lee GW, Park M, Kim J, Lee JI, Yoon HG (2006) Enhanced thermal conductivity of polymer composites filled with hybrid filler. Compos Part A—Appl Sci Manuf 37:727–734

    Article  Google Scholar 

  19. Gao Y, Gu A, Jiao Y, Yang Y, Liang G, Hu JT, Yao W, Yuan L (2012) High-performance hexagonal boron nitride/bismaleimide composites with high thermal conductivity, low coefficient of thermal expansion, and low dielectric loss. Polym Adv Technol 23:919–928

    Article  Google Scholar 

  20. Yung KC, Liem H (2007) Enhanced thermal conductivity of boron nitride epoxy-matrix composite through multi-modal particle size mixing. J App Polym Sci 106:3587–3591

    Article  Google Scholar 

  21. Im H, Hwang Y, Moon JH, Lee SH, Kim J (2013) The thermal conductivity of Al(OH)3 covered MWCNT/epoxy terminated dimethyl polysiloxane composite based on analytical Al(OH)3 covered MWCNT. Compos Part A—Appl Sci Manuf 54:159–165

    Article  Google Scholar 

  22. Agrawal A, Satapathy A (2015) Mathematical model for evaluating effective thermal conductivity of polymer composites with hybrid fillers. Int J Therm Sci 89:203–209

    Article  Google Scholar 

  23. Fu YX, He ZX, Mo DC, Lu SS (2014) Thermal conductivity enhancement with different fillers for epoxy resin adhesives. Appl Therm Eng 66:493–498

    Article  Google Scholar 

  24. Sanada K, Tada Y, Shindo Y (2009) Thermal conductivity of polymer composites with close-packed structure of nano and micro fillers. Compos Part A—Appl Sci Manuf 40:724–730

    Article  Google Scholar 

  25. Oleksy M, Szwarc-Rzepka K, Heneczkowski M, Oliwa R, Jesionowski T (2014) Epoxy resin composite based on functional hybrid fillers. Materials 7(8):6064

    Article  Google Scholar 

  26. Yao Y, Zeng X, Guo K, Sun R, J-b Xu (2015) The effect of interfacial state on the thermal conductivity of functionalized Al2O3 filled glass fibers reinforced polymer composites. Compos Part A—Appl Sci Manuf 69:49–55

    Article  Google Scholar 

  27. Li S, Qi S, Liu N, Cao P (2011) Study on thermal conductive BN/novolac resin composites. Thermochim Acta 523:111–115

    Article  Google Scholar 

  28. Yuan FY, Zhang HB, Li X, Li XZ, Yu ZZ (2013) Synergistic effect of boron nitride flakes and tetrapod-shaped ZnO whiskers on the thermal conductivity of electrically insulating phenol formaldehyde composites. Compos Part A—Appl Sci Manuf 53:137–144

    Article  Google Scholar 

  29. Karim MR, Rahman MA, Miah MAJ, Ahmad H, Yanagisawa M, Ito M (2011) Synthesis of γ-alumina particles and surface characterization. Open Colloid Sci J 4:32–36

    Article  Google Scholar 

  30. Luis ASA, Prado Montira S, Marcos G, Ana Barros T, Karl S (2010) Surface modification of alumina nanoparticles with silane coupling agents. J Braz Chem Soc 21:2238–2245

    Article  Google Scholar 

  31. Teng CC, Ma CCM, Chiou KC, Lee TM, Shih YF (2011) Synergetic effect of hybrid boron nitride and multi-walled carbon nanotubes on the thermal conductivity of epoxy composites. Mater Chem Phys 126:722–728

    Article  Google Scholar 

  32. Jun H, Li GH, Na Y, Qin LL, Maryam EG, Zhang QX, Wang NY, Qu XW (2014) Preparation and characterization of surface modified boron nitride epoxy composites with enhanced thermal conductivity. RSC Adv 4:44282–44290

    Article  Google Scholar 

  33. Milad Z, Mehrzad M, Babak S, Jam JE (2013) Fracture toughness of epoxy polymer modified with nanosilica particles: particle size effect. Eng Fract Mech 97:193–206

    Article  Google Scholar 

  34. Hong JP, Yoon SW, Hwang T, Oh JS, Hong SC, Lee Y, Nam JD (2012) High thermal conductivity epoxy composites with bimodal distribution of aluminum nitride and boron nitride fillers. Thermochim Acta 537:70–75

    Article  Google Scholar 

  35. Fu J, Shi L, Zhang D, Zhong Q, Chen Y (2010) Effect of nanoparticles on the performance of thermally conductive epoxy adhesives. Polym Eng Sci 50:1809–1819

    Article  Google Scholar 

  36. Kuzak SG, Shanmugam A (1999) Dynamic mechanical analysis of fiber-reinforced phenolics. J Appl Polym Sci 73:649–658

    Article  Google Scholar 

  37. Kim K, Kim J (2014) Fabrication of thermally conductive composite with surface modified boron nitride by epoxy wetting method. Ceram Intern 40:5181–5189

    Article  Google Scholar 

  38. Ash BJ, Schadler LS, Siegel RW (2002) Glass transition behavior of alumina/polymethylmethacrylate nanocomposites. Mat Lett 55:83–87

    Article  Google Scholar 

  39. Xiong M, Gu G, You B, Wu L (2003) Preparation and characterization of poly(styrene butylacrylate) latex/nano-ZnO nanocomposites. J Appl Polym Sci 90:1923–1931

    Article  Google Scholar 

  40. Sun Y, Zhang Z, Moon K-S, Wong CP (2004) Glass transition and relaxation behavior of epoxy nanocomposites. J Polym Sci Pol Phys 42:3849–3858

    Article  Google Scholar 

  41. Suriati G, Mariatti M, Azizan A (2011) Effects of filler shape and size on the properties of silver filled epoxy composite for electronic applications. J Mater Sci: Mater Electron 22:56–63

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank USM for the PRGS (1001/PFIZIK/846074) funding, and OSRAM Optosemiconductors (Malaysia) Sdn. Bhd. and OSRAM Optosemiconductors GmbH, Regensburg, Germany for characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anithambigai Permal.

Ethics declarations

Conflict of interest

All the co-authors have seen and agreed with the contents of the manuscript and there is no financial interest to report. We certify that the submission is the original work by us and is not under review in any other publication. We also would like to justify that we do not have any conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Permal, A., Devarajan, M., Hung, H.L. et al. Thermal and mechanical properties of epoxy composite filled with binary particle system of polygonal aluminum oxide and boron nitride platelets. J Mater Sci 51, 7415–7426 (2016). https://doi.org/10.1007/s10853-016-0016-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0016-3

Keywords

Navigation