Skip to main content
Log in

Martensitic Phase Transformation in a f.c.c./B2 FeNiMnAl Alloy

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Fe36Ni18Mn33Al13 is a lamellar two-phase alloy comprising a hard, Ni,Al-rich B2 phase measuring ~500 nm in width and a ductile, Fe,Mn-rich f.c.c. phase ~1 µm in width. Upon cold rolling and annealing, the as-cast microstructure is replaced by discrete, recrystallized ~1 µm-sized grains consisting of the f.c.c. phase and a 7R (14 M) martensite phase. The formation of the latter phase appears to be related to the change in composition of the phases upon recrystallization. Room-temperature tensile tests performed on 50 % cold-worked and annealed Fe36Ni18Mn33Al13 reveal that complete recrystallization does not occur until after 24 h of annealing at 900 °C, wherein the yield strength and elongation to fracture of the recrystallized alloy are ~443 MPa and 21 %, respectively—a change from the as-cast alloy’s values of ~352 MPa and ~28 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

REFERENCES

  1. Misra A, Gibala R (1997) Room-temperature deformation behavior of directionally solidified multiphase Ni–Fe–Al alloys. Metall Mater Trans A 28(3):795–807

    Article  Google Scholar 

  2. Guha S, Munroe PR, Baker I (1991) Room temperature deformation behavior of multiphase Ni–20 at% Al–30 at% Fe and its constituent phases. Mater Sci Eng A 131(1):27–37

    Article  Google Scholar 

  3. Baker I, Wu X, Meng F, Munroe PR (2014) Microstructures and mechanical properties of two-phase fenimnal alloys. Mater Sci Forum 783–786:2549–2554

    Article  Google Scholar 

  4. Baker I, Meng F, Wu M, Brandenberg A (2015) Recrystallization of a novel two-phase FeNiMnAlCr high entropy alloy. J Alloys and Compd. in press

  5. Bhattacharjee PP, Sathiaraj GD, Zaid M, Gatti JR, Lee Chi, Tsai Che-Wei, Yeh Jien-Wei (2014) Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy. J Alloy Compd 587:544–552

    Article  Google Scholar 

  6. Kainuma R, Ono N, Ishida K (1995) Development of nial (b2)-base shape memory alloys. Mat Res Soc Symp Proc 360:467–478

    Article  Google Scholar 

  7. Martynov VV, Enami K, Khandros LG, Tkachenko AV, Nenno S (1983) Crystal structure of stress-induced and thermal martensites in 631 at %Ni–Al alloy. Scr Metall 17:1167–1171

    Article  Google Scholar 

  8. Schryvers D, Tanner LE (1990) On the interpretation of high resolution electron microscopy images of premartensitic microstuctures in the Ni–Al beta2 Phase. Ultramicroscopy 32:241–254

    Article  Google Scholar 

  9. Smialek JL, Hehemann RF (1973) Transformation temperatures of martensite in beta-phase nickel aluminide. Metall Trans 4(6):1571–1575

    Google Scholar 

  10. Meng F, Qiu J, Baker I (2014) Effect of Al content on the microstructure and mechanical behavior of two-phase FeNiMnAl alloys. J Mater Sci 49:1973–1983

    Article  Google Scholar 

  11. Liao Y, Baker I (2011) On the room-temperature deformation mechanism of lamellar-structured Fe30Ni20Mn35Al15. Mater Sci Eng A 528:3998–4008

    Article  Google Scholar 

  12. Noda Y, Shapiro SM, Shirane G, Yamada Y, Tanner LE (1990) Martensitic transformation of a Ni–Al alloy I experimental results and approximate structure of the seven-layered phase. Phys Rev B 42(16):397–404

    Article  Google Scholar 

  13. Kainuma R, Nakano H, Ishida K (1996) Martensitic transformations in nimnal β phase alloys. metall mater trans A 27:4153–4162

    Article  Google Scholar 

  14. Kainuma R, Ohtani H, Ishida K (1996) Effect of alloying elements on martensitic transformation in the binary nial (β) phase alloys. Metall Mater. Trans 27:2445–2453

    Article  Google Scholar 

  15. Hornbogen E, Koster U(1978) Recrystallization of two phase alloys. Recryst. in Met. Mater. In: Haessner F(ed). pp159-194

  16. Morito S, Otsuka K (1996) Electron microscopy of new martensites with long period stacking order structures in Ni50AlxMn50−x alloys I: Structures and morphologies. Mater Sci Eng, A 208(1):47–55

    Article  Google Scholar 

  17. Wani IS, Bhattacharjee T, Sheikh S, Lu YP, Chatterjee SP, Bhattacharjee P, Guo S, Tsuji N (2016) Ultrafine-grained AlCoCrFeNi2.1 eutectic high-entropy alloy. Maters Res Lett. 1-6. doi:10.1080/21663831.2016.1160451

  18. Honeycombe RWK, Boas W (1947) Recrystallization of duplex brass. Nature 159(4051):847–848

    Article  Google Scholar 

  19. Clarebrough LM (1949) Deformation and recrystallization of alloys containing two phases. Aust J Sci Res, Ser A 3:72–90

    Google Scholar 

  20. Cooke BA, Jones A, Ralph B (1979) Recrystallization of microduplex steels. metal Sci 13(3–4):179–186

    Article  Google Scholar 

  21. Clarebrough LM, Perger GM (1951) Influence of the volume fractions of the phases on the deformation of (α + β) brass. Aust J Sci Res, Ser A 5:114–118

    Google Scholar 

  22. Mader K, Hornbogen E (1974) Systematics of recrystallisation micromechanisms in alpha/beta brass. Scr Metall 8:979–984

    Article  Google Scholar 

  23. Lee K, Im Y, Kestens L, Kim G (2007) Recrystallization and spheroidization of high carbon pearlitic steels investigated by means of orientation imaging microscopy. Mater Sci Forum 539:4556–4561

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences grant DE-FG02-07ER46392. The views and conclusions obtained herein are those of the authors and should not be interpreted as necessarily representing official policies, either expressed or implied of the DOE or the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Munroe, P.R. & Baker, I. Martensitic Phase Transformation in a f.c.c./B2 FeNiMnAl Alloy. J Mater Sci 51, 7831–7842 (2016). https://doi.org/10.1007/s10853-016-0015-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0015-4

Keywords