Skip to main content
Log in

Effect of copper foil annealing process on large graphene domain growth by solid source-based chemical vapor deposition

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Controlling the metal catalyst surface structure is a critical factor to achieve growth of large graphene domains. In this prospect, we explored the annealing process to create an oxide layer and subsequent recrystallization of Cu foil for growth of large graphene domain by the atmospheric pressure chemical vapor deposition (AP-CVD) technique. We revealed the transformation of Cu surface crystallographic structures in every step of annealing process by electron back-scattered diffraction analysis. Initially, electroless polished Cu foils are annealed in Ar and then in H2 atmosphere to obtain a smoother surface with reduced graphene nucleation sites. The transformation of Cu grain structures at various annealing steps was confirmed, where the gas atmosphere and annealing duration have significant influence. Graphene domains with the size more than 560 µm are obtained on the processed Cu surface using polystyrene as solid precursor. It is obtained that the oxidation and recrystallization process of Cu foil surface significantly influence the nucleation density, which enable growth of larger graphene domain in the developed CVD process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bae S, Kim HK, Lee Y, Xu X, Park J, Zheng Y, Balakrishnan J, Im D, Lei T, Song Y, Kim Y, Kim K, Ozyimaz B, Ahn J, Hong B, Iijima S (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574–578

    Article  Google Scholar 

  2. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710

    Article  Google Scholar 

  3. Li XS, Cai WW, An JH, Kim S, Nah J, Yang DX, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–1314

    Article  Google Scholar 

  4. Kalita G, Matsushima M, Uchida H, Wakita K, Umeno M (2010) Graphene constructed carbon thin films as transparent electrodes for solar cell applications. J Mater Chem 20:9713–9717

    Article  Google Scholar 

  5. Wang H, Wang G, Bao P, Yang S, Zhu W, Xie X, Zhang WJ (2012) Controllable synthesis of submillimeter single-crystal monolayer graphene domains on copper foils by suppressing nucleation. J Am Chem Soc 134:3627–3630

    Article  Google Scholar 

  6. Gao L, Ren W, Xu H, Jin L, Wang Z, Ma T, Ma LP, Zhang Z, Fu Q, Peng LM, Bao X, Cheng HM (2012) Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat Commun 3:699. doi:10.1038/ncomms1702

    Article  Google Scholar 

  7. Yan Z, Lin J, Peng Z, Sun Z, Zhu Y, Li L, Xiang C, Samuel EL, Kittrell C, Tour JM (2012) Toward the synthesis of wafer-scale single-crystal graphene on copper foils. Growth of single crystal graphene arrays by locally controlling nucleation on polycrystalline Cu using chemical vapor deposition. ACS Nano 6:9110–9117

    Article  Google Scholar 

  8. Wu W, Jauregui LA, Su Z, Liu Z, Bao J, Chen YP, Yu Q (2011) Growth of single crystal graphene arrays by locally controlling nucleation on polycrystalline Cu using chemical vapor deposition. Adv Mater 23(42):4898–4903

    Article  Google Scholar 

  9. Zhou H, Yu WJ, Liu L, Cheng R, Chen Y, Huang X, Liu Y, Wang Y, Huang Y, Duan X (2013) Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene. Nat Commun 4:2096. doi:10.1038/ncomms3096

    Google Scholar 

  10. Vlassiouk I, Fulvio P, Meyer H, Lavrik N, Dai S, Datskos P, Smirnov S (2013) Large scale atmospheric pressure chemical vapor deposition of graphene. Carbon 54:58–67

    Article  Google Scholar 

  11. Wu T, Zhang X, Yuan Q, Xue J, Lu G, Liu Z, Wang H, Wang H, Ding F, Yu Q, Xie X, Jiang M (2016) Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu–Ni alloys. Nat Mater 15:43–47

    Article  Google Scholar 

  12. Zhao P, Kumamoto A, Kim S, Chen X, Hou B, Chiashi S, Einarsson E, Ikuhara Y, Maruyama S (2013) Self-limiting chemical vapor deposition growth of monolayer graphene from ethanol. J Phys Chem C 117:10755–10763

    Article  Google Scholar 

  13. Wu T, Ding G, Shen H, Wang H, Sun L, Jiang D, Xie X, Jiang M (2013) Triggering the continuous growth of graphene toward millimeter-sized grains. Adv Funct Mater 23:198–203

    Article  Google Scholar 

  14. Hu B, Ago H, Ito Y, Kawahara K, Tsuji M, Magome E, Sumitani K, Mizuta N, Ikeda K, Mizuno S (2012) Epitaxial growth of large-area single-layer graphene over Cu(111)/sapphire by atmospheric pressure CVD. Carbon 50:57–65

    Article  Google Scholar 

  15. Wood JD, Schmucker SW, Lyons AS, Pop E, Lyding JW (2011) Effects of polycrystalline Cu substrate on graphene growth by chemical vapor deposition. Nano Lett 11:4547–4554

    Article  Google Scholar 

  16. Sharma S, Kalita G, Hirano R, Hayashi Y, Tanemura M (2013) Influence of gas composition on the formation of graphene domain synthesized from camphor. Mater Lett 93:258–262

    Article  Google Scholar 

  17. Luo B, Chen B, Meng L, Geng D, Liu H, Xu J, Zhang Z, Zhang H, Peng L, He L, Hu W, Liu Y, Yu G (2014) Layer-stacking growth and electrical transport of hierarchical graphene architectures. Adv Mater 26:3218–3224

    Article  Google Scholar 

  18. Tan L, Zeng M, Zhang T, Fu L (2015) Design of catalytic substrates for uniform graphene films: from solid-metal to liquid-metal. Nanoscale 7:9105–9121

    Article  Google Scholar 

  19. Ma T, Rena W, Zhang X, Liu Z, Gao Y, Yin LC, Ma XL, Ding F, Cheng HM (2013) Uniform hexagonal graphene flakes and films grown on liquid copper surface. Proc Natl Acad Sci 109:7992–7996

    Google Scholar 

  20. Wu B, Geng D, Xu Z, Guo Y, Huang L, Xue Y, Chen J, Yu G, Liu Y (2013) Self-organized graphene crystal patterns. NPG Asia Mater 5:e36. doi:10.1038/am.2012.68

    Article  Google Scholar 

  21. Hao Y, Bharathi MS, Wang L, Liu Y, Chen H, Nie S, Wang X, Chou H, Tan C, Fallahazad B, Ramanarayan H, Magnuson CW, Tutuc E, Yakobson BI, McCarty KF, Zhang YW, Kim P, Hone J, Colombo L, Ruoff RS (2013) The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 342:720–723

    Article  Google Scholar 

  22. Sharma S, Kalita G, Hirano R, Shinde SM, Papon R, Ohtani H, Tanemura M (2014) Synthesis of graphene crystals from solid waste plastic by chemical vapor deposition. Carbon 72:66–73

    Article  Google Scholar 

  23. Li Z, Wu P, Wang C, Fan X, Zhang W, Zhai X, Zeng C, Li Z, Yang J, Hou J (2011) Low-temperature growth of graphene by chemical vapor deposition using solid and liquid Carbon Sources. ACS Nano 5(4):3385–3390

    Article  Google Scholar 

  24. Sun Z, Yan Z, Yao J, Beitler E, Zhu Y, Tour JM (2010) Growth of graphene from solid carbon sources. Nature 468:549–552

    Article  Google Scholar 

  25. Shinde SM, Kano E, Kalita G, Takeguchi M, Hashimoto A, Tanemura M (2016) Grain structures of nitrogen-doped graphene synthesized by solid source-based chemical vapor deposition. Carbon 96:448–453

    Article  Google Scholar 

  26. Sun H, Rosenthal C (2012) Schmidt LD Oxidative pyrolysis of polystyrene into styrene monomers in an autothermal fixed-bed catalytic reactor. ChemSusChem 5(10):1883–1887

    Article  Google Scholar 

  27. Sarker M, Rashid MM, Rahman MS, Molla M (2012) Polystyrene (PS) waste plastic conversion into aviation/kerosene category of fuel by using fractional column distillation process. Int J Energy Environ 3(6):871–880

    Google Scholar 

  28. Somekh M, Shawat E, Nessim GD (2014) Fully reproducible, low-temperature synthesis of high-quality, few-layer graphene on nickel via preheating of gas precursors using atmospheric pressure chemical vapor deposition. J Mater Chem A 2:19750–19758

    Article  Google Scholar 

  29. Luo YR (2007) Comprehensive handbook of chemical bond energies. CRC Press, Boca Raton, pp 1–1487

    Book  Google Scholar 

  30. Gan L, Luo Z (2013) Turning off hydrogen to realize seeded growth of subcentimeter single-crystal graphene grains on copper. ACS Nano 7:9480–9488

    Article  Google Scholar 

  31. Robinson ZR, Tyagi P, Murray TM, Ventrice CA Jr, Chen S, Munson A, Magnuson CW, Ruoff RS (2012) Substrate grain size and orientation of Cu and Cu–Ni foils used for the growth of graphene films. J Vac Sci Technol A 30:011401. doi:10.1116/1.3663877

    Article  Google Scholar 

  32. Zhang Y, Zhang L, Kim P, Ge M, Li Z, Zhou C (2012) Vapor trapping growth of single-crystalline graphene flowers: synthesis, morphology, and electronic properties. Nano Lett 12:2810–2816

    Article  Google Scholar 

  33. Yan Z, Liu Y, Ju L, Peng Z, Lin J, Wang G, Zhou H, Xiang C, Samuel ELG, Kittrell C, Artyukhov VI, Wang F, Yakobson BI, Tour JM (2014) Large hexagonal bi- and trilayer graphene single crystals with varied interlayer rotations. Angew Chem Int Ed 53(6):1565–1569

    Article  Google Scholar 

  34. Shi YG, Wang D, Zhang JC, Zhang P, Shi XF, Hao Y (2014) Fabrication of single-crystal few-layer graphene domains on copper by modified low-pressure chemical vapor deposition. CrystEngComm 16:7558–7563

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by Grant-in-Aid for Young Scientists (B) from Japan Society for the Promotion of Science (Grant No. 15K21076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Golap Kalita.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 893 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, K.P., Shinde, S.M., Rosmi, M.S. et al. Effect of copper foil annealing process on large graphene domain growth by solid source-based chemical vapor deposition. J Mater Sci 51, 7220–7228 (2016). https://doi.org/10.1007/s10853-016-0003-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0003-8

Keywords

Navigation