Skip to main content
Log in

Cyclic olefin copolymer–silica nanocomposites foams

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A cyclic olefin copolymer (COC) matrix was melt compounded with various amounts of fumed silica nanoparticles (1, 3 and 5 vol%) and the resulting materials were foamed through supercritical carbon dioxide. Foams were produced at four different foaming pressures (90, 110, 130, and 150 bar), keeping all other processing parameters constant. The main physical properties of both bulk and foamed samples were investigated in order to assess the role of both nanofiller content and foaming pressure. It was observed that the density values of the foamed materials decreased as the foaming pressure increased and that the presence of nanofillers leads to slightly denser materials. Both scanning and transmission electron microscopy evidenced the presence of filler aggregates on the bulk composites. These aggregates resulted to be elongated along the cell wall direction upon foaming. Dynamic mechanical thermal analysis, quasi-static tensile tests, and creep tests evidenced a positive effect played by nanosilica in improving the stiffness, the strength, and the creep stability of the polymer matrix for all foaming pressures. The application of a theoretical model for closed-cell foams highlighted how the stiffening effect provided by the nanosilica networking is mostly effective at elevated filler amounts and reduced foaming pressure values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Cooper AI (2003) Porous materials and supercritical fluids. Adv Mater 15:1049–1059

    Article  Google Scholar 

  2. Bhattacharya S, Gupta RK, Jollands M, Bhattacharya SN (2009) Foaming behavior of high-melt strength polypropylene/clay nanocomposites. Polym Eng Sci 49:2070–2084

    Article  Google Scholar 

  3. Deng L, Zhang J, Yu W and Zhao Y (2008) Foaming behavior of polystyrene with supercritical carbon dioxide. 11th European Meeting on Supercritical Fluids. Barcelona, Spain

  4. Gendron R, Champagne MF, Tatibouet J, Bureau MN (2009) Foaming cyclo-olefin copolymers with carbon dioxide. Cell Polym 28:1–23

    Google Scholar 

  5. Han X, Koelling KW, Tomasko DL, Lee LJ (2002) Continuous microcellular polystyrene foam extrusion with supercritical CO2. Polym Eng Sci 42:2094–2106

    Article  Google Scholar 

  6. Han X, Zeng C, Lee LJ, Koelling KW, Tomasko DL (2003) Extrusion of polystyrene nanocomposite foams with supercritical CO2. Polym Eng Sci 43:1261–1275

    Article  Google Scholar 

  7. Jiang X-L, Bao J-B, Liu T, Zhao L, Xu Z-M and Yuan W-K (2009) Microcellular foaming of polypropylene/clay nanocomposites with supercritical carbon dioxide. J Cell Plast 45(6):515–538

  8. Nam PH, Maiti P, Okamoto M et al (2002) Foam processing and cellular structure of polypropylene/clay nanocomposites. Polym Eng Sci 42:1907–1918

    Article  Google Scholar 

  9. Otsuka T, Taki K, Ohshima M (2008) Nanocellular foams of PS/PMMA polymer blends. Macromol Mater Eng 293:78–82

    Article  Google Scholar 

  10. Strauss W, D’Souza NA (2004) Supercritical CO2 processed polystyrene nanocomposite foams. J Cell Plast 40:229–241

    Article  Google Scholar 

  11. Xu Z-M, Jiang X-L, Liu T et al (2007) Foaming of polypropylene with supercritical carbon dioxide. J Supercrit Fluids 41:299–310

    Article  Google Scholar 

  12. Zosel K (1978) Praktische Anwendungen der Stofftrennung mit überkritischen Gasen. Angew Chem 90:748–755

    Article  Google Scholar 

  13. Nalawade SP, Picchioni F, Janssen L (2006) Supercritical carbon dioxide as a green solvent for processing polymer melts: processing aspects and applications. Prog Polym Sci 31:19–43

    Article  Google Scholar 

  14. Yeo S-D, Kiran E (2005) Formation of polymer particles with supercritical fluids: a review. J Supercrit Fluids 34:287–308

    Article  Google Scholar 

  15. Arndt M, Beulich I (1998) C1-symmetric metallocenes for olefin polymerisation, 1. Catalytic performance of [Me2C (3-tertBuCp)(Flu)] ZrCl2 in ethene/norbornene copolymerisation. Macromol Chem Phys 199:1221–1232

    Article  Google Scholar 

  16. Ou C-F, Hsu M-C (2007) Preparation and characterization of cyclo olefin copolymer (COC)/silica nanoparticle composites by solution blending. J Polym Res 14:373–378

    Article  Google Scholar 

  17. Ou CF, Hsu MC (2007) Preparation and properties of cycloolefin copolymer/silica hybrids. J Appl Polym Sci 104:2542–2548

    Article  Google Scholar 

  18. Forsyth JF, Scrivani T, Benavente R, Marestin C, Perena JM (2001) Thermal and dynamic mechanical behavior of ethylene/norbornene copolymers with medium norbornene contents. J Appl Polym Sci 82:2159–2165

    Article  Google Scholar 

  19. Kolařík J, Pegoretti A, Fambri L, Penati A (2006) High-density polyethylene/cycloolefin copolymer blends, part 2: nonlinear tensile creep. Polym Eng Sci 46:1363–1373

    Article  Google Scholar 

  20. Mandalia T, Bergaya F (2006) Organo clay mineral–melted polyolefin nanocomposites effect of surfactant/CEC ratio. J Phys Chem Solids 67:836–845

    Article  Google Scholar 

  21. Ajayan PM, Schadler LS, Braun PV (2006) Nanocomposite science and technology. Wiley, Hoboken

    Google Scholar 

  22. Bondioli F, Dorigato A, Fabbri P, Messori M, Pegoretti A (2008) High-density polyethylene reinforced with submicron titania particles. Polym Eng Sci 48:448–457

    Article  Google Scholar 

  23. Dorigato A, Pegoretti A (2012) Fracture behaviour of linear low density polyethylene–fumed silica nanocomposites. Eng Fract Mech 79:213–224

    Article  Google Scholar 

  24. Dorigato A, Pegoretti A, Fambri L, Slouf M, Kolarik J (2011) Cycloolefin copolymer/fumed silica nanocomposites. J Appl Polym Sci 119:3393–3402

    Article  Google Scholar 

  25. Jana SC, Jain S (2001) Dispersion of nanofillers in high performance polymers using reactive solvents as processing aids. Polymer 42:6897–6905

    Article  Google Scholar 

  26. Dorigato A, Pegoretti A, Frache A (2012) Thermal stability of high density polyethylene–fumed silica nanocomposites. J Therm Anal Calorim 109:863–873

    Article  Google Scholar 

  27. Chen L, Schadler LS, Ozisik R (2011) An experimental and theoretical investigation of the compressive properties of multi-walled carbon nanotube/poly (methyl methacrylate) nanocomposite foams. Polymer 52:2899–2909

    Article  Google Scholar 

  28. Huang H-X, Wang J-K, Sun X-H (2008) Improving of cell structure of microcellular foams based on polypropylene/high-density polyethylene blends. J Cell Plast 44:69–85

    Article  Google Scholar 

  29. Kozlowski M (2012) Lightweight plastic materials. INTECH Open Access Publisher, Rijeka

    Book  Google Scholar 

  30. Li G, Wang J, Park C, Simha R (2007) Measurement of gas solubility in linear/branched PP melts. J Polym Sci Part B 45:2497–2508

    Article  Google Scholar 

  31. Rachtanapun P, Selke S, Matuana L (2004) Effect of the high-density polyethylene melt index on the microcellular foaming of high-density polyethylene/polypropylene blends. J Appl Polym Sci 93:364–371

    Article  Google Scholar 

  32. Su FH, Huang HX (2010) Rheology and melt strength of long chain branching polypropylene prepared by reactive extrusion with various peroxides. Polym Eng Sci 50:342–351

    Article  Google Scholar 

  33. Tsivintzelis I, Angelopoulou AG, Panayiotou C (2007) Foaming of polymers with supercritical CO2: an experimental and theoretical study. Polymer 48:5928–5939

    Article  Google Scholar 

  34. Corre Y-M, Maazouz A, Duchet J, Reignier J (2011) Batch foaming of chain extended PLA with supercritical CO2: influence of the rheological properties and the process parameters on the cellular structure. J Supercrit Fluids 58:177–188

    Article  Google Scholar 

  35. Sun Y, Matsumoto M, Kitashima K, Haruki M, S-i Kihara, Takishima S (2014) Solubility and diffusion coefficient of supercritical-CO2 in polycarbonate and CO2 induced crystallization of polycarbonate. J Supercrit Fluids 95:35–43

    Article  Google Scholar 

  36. D’Amato M, Dorigato A, Fambri L, Pegoretti A (2012) High performance polyethylene nanocomposite fibers. Express Polym Lett 6:954–964

    Article  Google Scholar 

  37. S-s Hwang, Hsu PP (2013) Effects of silica particle size on the structure and properties of polypropylene/silica composites foams. J Ind Eng Chem 19:1377–1383

    Article  Google Scholar 

  38. Pegoretti A, Dorigato A, Penati A (2007) Tensile mechanical response of polyethylene–clay nanocomposites. Express Polym Lett 1:123–131

    Article  Google Scholar 

  39. Starkova O, Yang J, Zhang Z (2007) Application of time–stress superposition to nonlinear creep of polyamide 66 filled with nanoparticles of various sizes. Compos Sci Technol 67:2691–2698

    Article  Google Scholar 

  40. Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties. Cambridge University Press, Cambridge

    Book  Google Scholar 

  41. Alvarez P, Mendizabal A, Petite M, Rodríguez-Pérez M, Echeverria A (2009) Finite element modelling of compressive mechanical behaviour of high and low density polymeric foams. Materialwiss Werkstofftech 40:126–132

    Article  Google Scholar 

  42. De Vries D (2009) Characterization of polymeric foams. Eindhoven University of Technology, Eindhoven

    Google Scholar 

Download references

Acknowledgements

The authors thank Mr. Marco Schintu for his support to the experimental work and Prof. Claudio Migliaresi, Director of the BIOtech center of Mattarello (Italy), for courtesy allowing the usage of the scCO2 plant. This research activity has been partly founded by the University of Trento through the strategic project 2014 “Mechanical and dynamical properties of disordered materials: from colloids to polymer nanocomposites.” The work at the Institute of Macromolecular Chemistry was supported by the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Program I (NPU I), project POLYMAT LO1507.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Pegoretti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pegoretti, A., Dorigato, A., Biani, A. et al. Cyclic olefin copolymer–silica nanocomposites foams. J Mater Sci 51, 3907–3916 (2016). https://doi.org/10.1007/s10853-015-9710-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9710-9

Keywords

Navigation