Skip to main content

How does hydration affect the mechanical properties of wine stoppers?


Data related to the comparison of the mechanical properties of the different stoppers used in the wine industry are scarce. This study aims at comparing the effect of hydration (from 0 to 100 % relative humidity at 25 °C) on the mechanical properties of four widely used types of stoppers: natural corks, agglomerated corks, technical stoppers and synthetic (co-extruded) stoppers. For both natural and agglomerated corks, the Young’s modulus was significantly and similarly affected by hydration, with a constant plateau value up to 50 % relative humidity (RH) and a mean value around 22 and 14 MPa, respectively. For higher RH, the increase in water content leads to a decrease in the material rigidity (Young’s modulus <10 MPa), which is attributed to water clusters formation between polymer chains. Technical stoppers revealed a similar profile, but with a much smaller impact of the water content and with overall lower Young’s moduli values, around 5 MPa, throughout the RH range. The stiffness of synthetic closures was not affected by hydration, in agreement with the hydrophobic behavior of polyethylene. Differential scanning calorimetry and dynamic mechanical thermal analysis allowed us to identify a glass transition temperature (T g) in cork (around 0 °C), and another one in agglomerated cork and technical stoppers (close to −45 °C, corresponding to additives). All together, for the first time the data highlight the comparative mechanical properties of such materials of the wine industry, and the progressive loss of the “cork-like” behavior of cork composites when other components are mixed with cork.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Barjonet C (2013) La consommation mondiale de vin portée par la demande chinoise, Les échos

  2. 2.

    Cougard MJ (2015) Vins: les Etats-Unis s’imposent comme le moteur de la croissance, Les échos

  3. 3.

    Carvalho FJ (2009) L’avenir du liège dans le monde, Amorim

  4. 4.

    Cork, les professionnels du liège (2011) Dossier de Presse : Le bouchon liège, partenaire naturel du vin

  5. 5.

    Lopes P, Saucier C, Glories Y (2005) Nondestructive colorimetric method to determine the oxygen diffusion rate through closures used in wine making. J Agric Food Chem 53:6967–6973

    Article  Google Scholar 

  6. 6.

    Lopes P, Saucier C, Teissedre PL, Glories Y (2006) Impact of storage position on oxygen ingress through different closures into wine bottles. J Agric Food Chem 54:6741–6747

    Article  Google Scholar 

  7. 7.

    Godden P, Lattey K, Francis L, Gishen M, Cowey G, Holdstock M, Robinson E, Waters E, Skouroumounis G, Sefton MA, Capone D, Kwiatkowski M, Field J, Coulter A, D’Costa N, Bramley B (2005) Towards offering wine to the consumer in optimal condition-the wine, the closures and other packaging variables: a review of AWRI research examining the changes that occur in wine after bottling. Aust N Z Wine Indust J 20:20–30

    Google Scholar 

  8. 8.

    Rabiot D, Sanchez J, Aracil JM (1999) Study of the oxygen transfer trough synthetic corks for wine conservation. In: Second European Congress of Chemical Engineering, Montpellier

  9. 9.

    Silva A, Lambri M, De Faveri MD (2003) Evaluation of the performances of synthetic and cork stoppers up to 24 months post-bottling. Eur Food Res Technol 216:529–534

    Google Scholar 

  10. 10.

    Karbowiak T, Gougeon RD, Alinc JB, Brachais L, Debeaufort F, Voilley A, Chassagne D (2010) Wine oxidation and the role of cork. Crit Rev Food Sci 50:20–52

    Article  Google Scholar 

  11. 11.

    Giunchi A, Versari A, Parpinello GP, Galassi S (2008) Analysis of mechanical properties of cork stoppers and synthetic closures used for wine bottling. J Food Eng 88:576–580

    Article  Google Scholar 

  12. 12.

    Jardin RT, Fernandes FAO, Pereira AB, Alves de Sousa RJ (2015) Static and dynamic mechanical response of different cork agglomerates. Mater Des 68:121–126

    Article  Google Scholar 

  13. 13.

    Pereira H (2007) Mechanical properties. Cork. Elsevier Science, Amsterdam, pp 207–225

    Chapter  Google Scholar 

  14. 14.

    Rosa ME, Fortes MA (1988) Rate effects on the compression and recovery of dimensions of cork. J Mater Sci 23:879–885. doi:10.1007/BF01153983

    Article  Google Scholar 

  15. 15.

    Anjos O, Rodrígues C, Morais J, Pereira H (2014) Effect of density on the compression behaviour of cork. Mater Des 53:1089–1096

    Article  Google Scholar 

  16. 16.

    Anjos O, Pereira H, Rosa ME (2008) Effect of quality, porosity and density on the compression properties of cork. Eur J Wood Prod 66:295–301

    Article  Google Scholar 

  17. 17.

    Oliveira V, Rosa ME, Pereira H (2014) Variability of the compression properties of cork. Wood Sci Technol 48:937–948

    Article  Google Scholar 

  18. 18.

    Gibson LJ, Easterling KE, Ashby MF (1981) The structure and mechanics of cork. Proc R Soc Lond A 377:99–117

    Article  Google Scholar 

  19. 19.

    Fortes MA, Teresa Nogueira M (1989) The Poisson effect in cork. Mat Sci Eng A 122:227–232

    Article  Google Scholar 

  20. 20.

    Pereira H, Graca J, Baptista C (1992) The effect of growth-rate on the structure and compressive properties of cork. IAWA Bull 13:389–396

    Article  Google Scholar 

  21. 21.

    Carpintero E, Jurado M, Prades C (2015) Application of a kiln drying technique to Quercus suber L. cork planks. Food Bioprod Proc 93:176–185

    Article  Google Scholar 

  22. 22.

    Anjos O, Pereira H, Rosa ME (2011) Tensile properties of cork in axial stress and influence of porosity, density, quality and radial position in the plank. Eur J Wood Prod 69:85–91

    Article  Google Scholar 

  23. 23.

    Anjos O, Pereira H, Rosa ME (2010) Tensile properties of cork in the tangential direction: variation with quality, porosity, density and radial position in the cork plank. Mater Des 31:2085–2090

    Article  Google Scholar 

  24. 24.

    Fernandes EM, Correlo VM, Mano JF, Reis RL (2015) Cork-polymer biocomposites: mechanical, structural and thermal properties. Mater Des 82:282–289

    Google Scholar 

  25. 25.

    Rosa ME, Fortes MA (1991) Deformation and fracture of cork in tension. J Mater Sci 26:341–348. doi:10.1007/BF00576525

    Article  Google Scholar 

  26. 26.

    Lagorce-Tachon A, Karbowiak T, Champion D, Gougeon RD, Bellat JP (2015) Mechanical properties of cork: effect of hydration. Mater Des 82:148–154

    Google Scholar 

  27. 27.

    Comité Interprofessionnel du vin de Champagne (2009) Guide qualité bouchon liège

  28. 28.

    Anderson RB (1946) Modifications of the Brunauer, Emmett and Teller equation. J Am Chem Soc 68:686–691

    Article  Google Scholar 

  29. 29.

    Quirijns EJ, van Boxtel AJB, van Loon WKP, van Straten G (2005) Sorption isotherms, GAB parameters and isosteric heat of sorption. J Sci Food Agric 85:1805–1814

    Article  Google Scholar 

  30. 30.

    Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquérol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems. Pure Appl Chem 57:603–619

    Article  Google Scholar 

  31. 31.

    Rodríguez O, Fornasiero F, Arce A, Radke CJ, Prausnitz JM (2003) Solubilities and diffusivities of water vapor in poly(methylmethacrylate), poly(2-hydroxyethylmethacrylate), poly(N-vinyl-2-pyrrolidone) and poly(acrylonitrile). Polymer 44:6323–6333

  32. 32.

    Pissis P, Apekis L, Christodoulides C, Niaounakis M, Kyritsis A, Nedbal J (1996) Water effects in polyurethane block copolymers. J Polym Sci Pol Phys 34:1529–1539

    Article  Google Scholar 

  33. 33.

    Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties, 2nd edn. Cambridge University Press, Cambridge, p 532

    Book  Google Scholar 

  34. 34.

    Lequin S, Chassagne D, Karbowiak T, Gougeon R, Brachais L, Bellat JP (2010) Adsorption equilibria of water vapor on cork. J Agric Food Chem 58:3438–3445

    Article  Google Scholar 

  35. 35.

    Gonzalez-Hernandez F, Gonzalez-Adrados JR, de Ceca JLG, Sanchez-Gonzalez M (2014) Quality grading of cork stoppers based on porosity, density and elasticity. Eur J Wood Prod 72:149–156

    Article  Google Scholar 

  36. 36.

    Mano JF (2007) Creep-recovery behaviour of cork. Mater Lett 61:2473–2477

    Article  Google Scholar 

  37. 37.

    Fernandes FAO, Pascoal RJS, de Sousa RJA (2014) Modelling impact response of agglomerated cork. Mater Des 58:499–507

    Article  Google Scholar 

  38. 38.

    Cordeiro N, Belgacem NM, Gandini A, Neto CP (1998) Cork suberin as a new source of chemicals: 2. Crystallinity, thermal and rheological properties. Bioresour Technol 63:153–158

    Article  Google Scholar 

  39. 39.

    Cordeiro N, Aurenty P, Belgacem MN, Gandini A, Neto CP (1997) Surface properties of suberin. J Colloid Interface Sci 187:498–508

    Article  Google Scholar 

  40. 40.

    Pérez-Limiñana MA, Arán-Aís F, Torró-Palau AM, Orgilés-Barceló AC, Martín-Martínez JM (2005) Characterization of waterborne polyurethane adhesives containing different amounts of ionic groups. Int J Adhes Adhes 25:507–517

    Article  Google Scholar 

  41. 41.

    Nabeth B, Corniglion I, Pascault JP (1996) Influence of the composition on the glass transition temperature of polyurethane and polyurethane acrylate networks. J Polym Sci Pol Phys 34:401–417

    Article  Google Scholar 

  42. 42.

    Mark JE, Polymer data handbook 1999

  43. 43.

    Mano JF (2002) The viscoelastic properties of cork. J Mater Sci 37:257–263. doi:10.1023/A:1013635809035

    Article  Google Scholar 

  44. 44.

    Suresh KI, Thomas KS, Rao BS, Nair CPR (2008) Viscoelastic properties of polyacrylonitrile terpolymers during thermo-oxidative stabilization (cyclization). Polym Adv Technol 19:831–837

    Article  Google Scholar 

  45. 45.

    Bashir Z, Rastogj S (2005) The explanation of the increase in slope at the Tg in the plot of d-spacing versus temperature in polyacrylonitrile. J Macromol Sci Phys B44:55–78

    Article  Google Scholar 

Download references


We gratefully acknowledge the Bureau Interprofessionnel des Vins de Bourgogne, the Comité Interprofessionnel du vin de Champagne and the Conseil Régional de Bourgogne for their financial supports. We thank the Trescases company, Diam company, and Nomacorc company for providing stoppers. The unidirectional compression tests on corks were performed with equipments from the technical platform RMB (Rhéologie et structure des Matériaux Biologiques) in AgroSup Dijon (France). We would like to thank the Ecole Supérieure d’Ingénieurs de Recherche en Matériaux et en Infotronique (ESIREM, Dijon, France) and Marie-Laure Léonard for DMTA measurements as well as Frederic Herbst from ICB for Scanning Electron Microscopy analyses. We also thank JC Rocca-Smith and Prof. JP Gay for helpful discussion on that work.

Author information



Corresponding author

Correspondence to Thomas Karbowiak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lagorce-Tachon, A., Karbowiak, T., Champion, D. et al. How does hydration affect the mechanical properties of wine stoppers?. J Mater Sci 51, 4227–4237 (2016).

Download citation


  • Stopper
  • Suberin
  • Sparkling Wine
  • Cork Stopper
  • Polyurethane Adhesive