Advertisement

Journal of Materials Science

, Volume 51, Issue 7, pp 3311–3317 | Cite as

Solvothermal synthesis of YBO3:Ce3+, Tb3+ nanophosphor: influence of B/(Y + Ce + Tb) ratio on particle size and photoluminescence intensity

  • Akihiro Nohara
  • Satoru TakeshitaEmail author
  • Yoshiki Iso
  • Tetsuhiko IsobeEmail author
Original Paper

Abstract

Well-dispersed YBO3:Ce3+, Tb3+ nanoparticles of 30–75 nm in size were prepared by a size-controllable solvothermal method in a 1,4-butanediol/water mixed solvent. The mean particle size could be increased from 32 to 73 nm by increasing the B/(Y + Ce + Tb) ratio in the starting materials from 1 to 3. Transmission electron microscopy, specific surface area analysis, and dynamic light scattering measurements confirmed that the nanoparticles were highly dispersed in solvent without any aggregation. Subsequently, the relationship between particle size and photoluminescence (PL) intensity was investigated. The nanoparticles showed green emission corresponding to 4f → 4f transitions of Tb3+ under near-UV excitation. The PL intensity and quantum yield increased with increasing particle size, thus indicating that surface defects acted as the predominant PL quenchers within the studied size range.

Keywords

Vaterite Acetate Tetrahydrate Trimethyl Borate Borate Anion YBO3 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

10853_2015_9645_MOESM1_ESM.docx (1.8 mb)
Supplementary material 1 (DOCX 1842 kb)

References

  1. 1.
    Bronstein ND, Li L, Xu L, Yao Y, Ferry VE, Alivisatos AP, Nuzzo RG (2014) Luminescent solar concentration with semiconductor nanorods and transfer-printed micro-silicon solar cells. ACS Nano 8:44–53CrossRefGoogle Scholar
  2. 2.
    Nimmo MT, Caillard LM, De Benedetti W, Nguyen HM, Seitz O, Gartstein YN, Chabal YJ, Malko AV (2013) Visible to near-infrared sensitization of silicon substrates via energy transfer from proximal nanocrystals: further insights for hybrid photovoltaics. ACS Nano 7:3236–3245CrossRefGoogle Scholar
  3. 3.
    Iso Y, Takeshita S, Isobe T (2012) Effects of YVO4:Bi3+, Eu3+ nanophosphors spectral down-shifter on properties of monocrystalline silicon photovoltaic module. J Electrochem Soc 159:J72–J76CrossRefGoogle Scholar
  4. 4.
    Isobe T (2013) Glycothermally synthesized YAG:Ce3+ nanophosphors for blue LEDs. ECS J Solid State Sci Technol 2:R3012–R3017CrossRefGoogle Scholar
  5. 5.
    Revaux A, Dantelle G, George N, Seshadri R, Gacoin T, Boilot JP (2011) A protected annealing strategy to enhanced light emission and photostability of YAG:Ce nanoparticle-based films. Nanoscale 3:2015–2022CrossRefGoogle Scholar
  6. 6.
    Nyman M, Shea-Rohwer LE, Martin JE, Provencio P (2009) Nano-YAG:Ce mechanisms of growth and epoxy-encapsulation. Chem Mater 21:1536–1542CrossRefGoogle Scholar
  7. 7.
    Bohren CF, Huffman SD (1983) Absorption and scattering of light by small particles. Wiley Interscience, New York, p 132Google Scholar
  8. 8.
    Saito M (1999) Surface modification of plastics 4. Optical function coatings on plastics by wet method. Bull Jpn Soc Print Sci Technol 36:50–55Google Scholar
  9. 9.
    Chadeyron G, El-Ghozzi M, Mahiou R, Arbus A, Cousseins JC (1997) Revised structure of the orthoborate YBO3. J Solid State Chem 128:261–266CrossRefGoogle Scholar
  10. 10.
    Ren M, Lin JH, Dong Y, Yang LQ, Su MZ, You LP (1999) Structure and phase transition of GdBO3. Chem Mater 11:1576–1580CrossRefGoogle Scholar
  11. 11.
    Zhang S (2006) Vacuum-ultraviolet/visible conversion phosphors for plasma display panels. IEEE Trans Plasma Sci 34:294–304CrossRefGoogle Scholar
  12. 12.
    Höppe HA (2009) Recent developments in the field of inorganic phosphors. Angew Chem Int Ed 48:3572–3582CrossRefGoogle Scholar
  13. 13.
    Zou D, Ma YQ, Qian SB, Huang BT, Zheng GH, Dai ZX (2014) Improved luminescent properties of novel nanostructured Eu3+ doped yttrium borate synthesized with carbon nanotube templates. J Alloys Compd 584:471–476CrossRefGoogle Scholar
  14. 14.
    Jia L, Shao Z, Lü Q, Tian Y, Han J (2014) Preparation of red-emitting phosphor (Y, Gd)BO3:Eu3+ by high temperature ball milling. Ceram Int 40:739–743CrossRefGoogle Scholar
  15. 15.
    Sohn KS, Choi YY, Park HD (2000) Photoluminescence behavior of Tb3+-activated YBO3 phosphors. J Electrochem Soc 147:1988–1992CrossRefGoogle Scholar
  16. 16.
    Blasse G, Bril A (1967) Study of energy transfer from Sb3+, Bi3+, Ce3+ to Sm3+, Eu3+, Tb3+, Dy3+. J Chem Phys 47:1920–1926CrossRefGoogle Scholar
  17. 17.
    Sato R, Takeshita S, Isobe T, Sawayama T, Niikura S (2012) Photoluminescence properties of green-emitting YBO3:Ce3+, Tb3+ phosphor for near UV excitation. ESC J Solid State Sci Technol 1:R163–R168CrossRefGoogle Scholar
  18. 18.
    Dubey V, Kaur J, Agrawal S, Suryanarayana NS, Murthy KVR (2014) Effect of Eu3+ concentration on photoluminescence and thermoluminescence behavior of YBO3:Eu3+ phosphor. Superlattices Microstruct 67:156–171CrossRefGoogle Scholar
  19. 19.
    Kim KN, Jung HK, Park HD (2002) Synthesis and characterization of red phosphor (Y, Gd)BO3:Eu by the coprecipitation method. J Mater Res 17:907–910CrossRefGoogle Scholar
  20. 20.
    Lee GH, Kang S (2006) Effect of pH and lattice distortion on the luminescence of (Y, Gd)BO3:Eu3+ phosphor prepared by the coprecipitation method. J Electrochem Soc 153:H105–H109CrossRefGoogle Scholar
  21. 21.
    Boyer D, Bertrand-Chadeyron G, Mahiou R, Chaperaa C, Cousseins JC (1999) Synthesis dependent luminescence efficiency in Eu3+ doped polycrystalline YBO3. J Mater Chem 9:211–214CrossRefGoogle Scholar
  22. 22.
    Wei Z, Sun L, Liao C, Yin J, Jiang X, Yan C (2002) Size-dependent chromaticity in YBO3:Eu nanocrystals: correlation with microstructure and site symmetry. J Phys Chem B 106:10610–10617CrossRefGoogle Scholar
  23. 23.
    Zhu H, Zhang L, Zuo T, Gu X, Wang Z, Zhu L, Yao K (2008) Sol–gel preparation and photoluminescence property of YBO3:Eu3+/Tb3+ nanocrystalline thin films. Appl Surf Sci 254:6362–6365CrossRefGoogle Scholar
  24. 24.
    Tukia M, Hölsa J, Lastusaari M, Niittykoski J (2005) Eu3+ doped rare earth orthoborates, RBO3 (R = Y, La and Gd) obtained by combustion synthesis. Opt Mater 27:1516–1522CrossRefGoogle Scholar
  25. 25.
    Onani MO, Okil JO, Dejene FB (2014) Solution-combustion synthesis and photoluminescence properties of YBO3:Tb3+ phosphor powders. Physica B 439:133–136CrossRefGoogle Scholar
  26. 26.
    Jia G, Tanner PA, Duan CK, Dexpert-Ghys J (2010) Eu3+ spectroscopy: a structural probe for yttrium orthoborate phosphors. J Phys Chem C 114:2769–2775CrossRefGoogle Scholar
  27. 27.
    Kim DS, Lee RY (2000) Synthesis and photoluminescence properties of (Y, Gd)BO3:Eu phosphor prepared by ultrasonic spray. J Mater Sci 35:4777–4782. doi: 10.1023/A:1004864426980 CrossRefGoogle Scholar
  28. 28.
    Choi S, Park BY, Seo JH, Yun YJ, Jung HK (2012) Emissive transparent luminescent layer using shape controlled YBO3:Eu3+ nanophosphors prepared by solvothermal reactions. Electrochem Solid State Lett 15:J19–J23CrossRefGoogle Scholar
  29. 29.
    Zhang X, Zhao Z, Zhang X, Marathe A, Cordes DB, Weeks B, Chaudhuri J (2013) Tunable photoluminescence and energy transfer of YBO3:Tb3+, Eu3+ for white light emitting diodes. J Mater Chem C 1:7202–7207CrossRefGoogle Scholar
  30. 30.
    Zhang X, Marathe A, Sohal S, Holtz M, Davis M, Hope-Weeks LJ, Chaudhuri J (2012) Synthesis and photoluminescence properties of hierarchical architectures of YBO3:Eu3+. J Mater Chem 22:6485–6490CrossRefGoogle Scholar
  31. 31.
    Hosokawa S, Tanaka Y, Iwamoto S, Inoue M (2008) Morphology and structure of rare earth borate (REBO3) synthesized by glycothermal reaction. J Mater Sci 43:2276–2285. doi: 10.1007/s10853-007-2023-x CrossRefGoogle Scholar
  32. 32.
    Ogata H, Takeshita S, Isobe T, Sawayama T, Niikura S (2011) Factors for determining photoluminescence properties of YBO3:Ce3+ phosphor prepared by hydrothermal method. Opt Mater 33:1820–1824CrossRefGoogle Scholar
  33. 33.
    Hara H, Takeshita S, Isobe T, Nanai Y, Okuno T, Sawayama T, Niikura S (2013) Glycothermal synthesis and photoluminescent properties of Ce3+-doped YBO3 mesocrystals. J Alloys Compd 577:320–326CrossRefGoogle Scholar
  34. 34.
    Nohara A, Takeshita S, Isobe T (2014) Mixed-solvent strategy for solvothermal synthesis of well-dispersed YBO3:Ce3+, Tb3+ nanocrystals. RSC Adv 4:11219–11224CrossRefGoogle Scholar
  35. 35.
    Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A32:751–767CrossRefGoogle Scholar
  36. 36.
    Steinburg H, Hunter DL (1957) Preparation and rate of hydrolysis of boric acid esters. Ind Eng Chem 49:174–181CrossRefGoogle Scholar
  37. 37.
    Jolly WL (1985) Modern inorganic chemistry. McGraw-Hill, New York, p 198Google Scholar
  38. 38.
    Kasuya R, Isobe T, Kuma H, Katano J (2005) Photoluminescence enhancement of PEG-modified YAG:Ce3+ nanocrystal phosphor prepared by glycothermal method. J Phys Chem B 109:22126–22130CrossRefGoogle Scholar
  39. 39.
    Shu JR, Kumar S, Das S, Lu CH (2012) Microemulsion-mediated synthesis and characterization of YBO3:Ce3+ phosphors. J Am Ceram Soc 95:1814–1817CrossRefGoogle Scholar
  40. 40.
    Chung CY, Hsu CH, Lu CH (2011) Preparation and mechanism of nest-like YBO3:Tb3+ phosphors synthesized via the microemulsion-mediated hydrothermal process. J Am Ceram Soc 94:2884–2889CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Applied Chemistry, Faculty of Science and TechnologyKeio UniversityYokohamaJapan
  2. 2.Research Institute for Chemical Process TechnologyNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan

Personalised recommendations