Skip to main content
Log in

Density functional theory study of diffusion of lithium in Li–Sn alloys

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Diffusion of Li in Li x Sn alloys was investigated using a density functional theory in order to fully understand the lithiation process in these types of Li ion batteries. Variation of the calculated open-circuit voltages of the Li x Sn alloys was found to agree well with experimental results. Diffusion coefficients of the Li in the Li x Sn alloys were calculated to be in the range between 6.6 × 10−8 and 5.6 × 10−7 cm2 s−1 at room temperature, which is within the range between 8.0 × 10−8 and 5.9 × 10−7 cm2 s−1 obtained from the experimental measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhang H, Sun X, Zhang X, Lin H, Wang K, Ma Y (2015) High-capacity nanocarbon anodes for lithium-ion batteries. J Alloy Comp 622:783–788

    Article  Google Scholar 

  2. Eom K, Jung J, Lee JT, Lair V, Joshi T, Lee SW, Lin Z, Fuller TF (2015) Improved stability of nano-Sn electrode with high-quality nano-SEI formation for lithium ion battery. Nano Energy 12:314–321

    Article  Google Scholar 

  3. Kiziltas-Yavuz N, Bhaskar A, Dixon D, Yavuz M, Nikolowski K, Lu L, Eichel R-A, Ehrenberg H (2014) Improving the rate capability of high voltage lithium-ion battery cathode material LiNi0.5Mn1.5O4 by ruthenium doping. J Power Sources 267:533–541

    Article  Google Scholar 

  4. Zhang W-J (2011) A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources 196:13–24

    Article  Google Scholar 

  5. Kim R, Nam D, Kwon H (2010) Electrochemical performance of a tin electrodeposit with a multi-layered structure for Li-ion batteries. J Power Sources 195:5067–5070

    Article  Google Scholar 

  6. Hu RZ, Zeng MQ, Zhu M (2009) Cyclic durable high-capacity Sn/Cu6Sn5 composite thin film anodes for lithium ion batteries prepared by electron-beam evaporation deposition. Electrochim Acta 54:2843–2850

    Article  Google Scholar 

  7. Zhao LZ, Hu SJ, Ru Q, Li WS, Hou XH, Zeng RH, Lu DS (2008) Effects of graphite on electrochemical performance of Sn/C composite thin film anodes. J Power Sources 184:481–484

    Article  Google Scholar 

  8. Hu R, Liu H, Zeng M, Liu J, Zhu M (2012) Progress on Sn-based thin-film anode materials for lithium-ion batteries. Chin Sci Bull 57:4119–4130

    Article  Google Scholar 

  9. Chou C-Y, Kim H, Hwang GS (2011) A comparative first-principles study of the structure, energetics, and properties of Li-M (M = Si, Ge, Sn) alloys. J Phys Chem C 115:20018–20026

    Article  Google Scholar 

  10. Robert F, Lippens PE, Fourcade R, Jumas J-C, Gillot F, Morcrette M, Tarascon J-M (2006) Mechanosynthesis and characterisation of the Li–Sn system. Hyperfine Interact 167:797–801

    Article  Google Scholar 

  11. Nithyadharseni P, Reddy MV, Nalini B, Kalpana M, Chowdari BVR (2015) Sn-based intermetallic alloy anode materials for the application of lithium ion batteries. Electrochim Acta 161:261–268

    Article  Google Scholar 

  12. Nithya C, Gopukumar S (2013) Reduced graphite oxide/nano Sn: a superior composite anode material for rechargeable lithium-ion batteries. ChemSusChem 6:898–904

    Article  Google Scholar 

  13. Zhang HK, Song HH, Chen XH, Zhou JS (2012) Enhanced lithium ion storage property of Sn nanoparticles: the confinement effect of few-walled carbon nanotubes. J Phys Chem C 116:22774–22779

    Article  Google Scholar 

  14. Li Y, Wu J, Chopra N (2015) Nano-carbon-based hybrids and heterostructures: progress in growth and application for lithium-ion batteries. J Mater Sci 50:7843–7865

    Article  Google Scholar 

  15. Jiang H, Ge Y, Fu K, Lu Y, Chen C, Zhu J, Dirican M, Zhang X (2015) Centrifugally-spun tin-containing carbon nanofibers as anode material for lithium-ion batteries. J Mater Sci 50:1094–1102

    Article  Google Scholar 

  16. Qiao H, Zheng Z, Zhang L, Xiao L (2008) SnO(2)@C core-shell spheres: synthesis, characterization, and performance in reversible Li-ion storage. J Mater Sci 43:2778–2784

    Article  Google Scholar 

  17. Szabo DV, Kilibarda G, Schlabach S, Trouillet V, Bruns M (2012) Structural and chemical characterization of SnO2-based nanoparticles as electrode material in Li-ion batteries. J Mater Sci 47:4383–4391

    Article  Google Scholar 

  18. Wang XL, Han WQ, Chen J, Graetz J (2010) Single-crystal intermetallic M-Sn (M = Fe, Cu Co, Ni) nanospheres as negative electrodes for lithium-ion batteries. ACS Appl Mater Interface 2:1548–1551

    Article  Google Scholar 

  19. Zhang PP, Ma ZS, Wang Y, Zou YL, Lei WX, Pan Y, Lu CS (2015) A first principles study of the mechanical properties of Li–Sn alloys. Rsc Adv 5:36022–36029

    Article  Google Scholar 

  20. Wen CJ, Huggins RA (1981) Chemical diffusion in intermediate phases in the lithium-silicon system. J Solid State Chem 37:271–278

    Article  Google Scholar 

  21. Nimon ES, Churikov AV (1996) Electrochemical behaviour of Li–Sn, Li–Cd and Li–Sn–Cd alloys in propylene carbonate solution. Electrochim Acta 41:1455–1464

    Article  Google Scholar 

  22. Winter M, Besenhard JO (1999) Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim Acta 45:31–50

    Article  Google Scholar 

  23. Machill S, Rahner D (1995) In-situ electrochemical characterization of lithium-alloying materials for rechargeable anodes in lithium batteries. J Power Sources 54:428–432

    Article  Google Scholar 

  24. Wang J, Raistrick ID, Huggins RA (1986) Behavior of some binary lithium alloys as negative electrodes in organic solvent-based electrolytes. J Electrochem Soc 133:457–460

    Article  Google Scholar 

  25. Courtney IA, Tse JS, Mao O, Hafner J, Dahn JR (1998) Ab initio calculation of the lithium-tin voltage profile. Phys Rev B 58:15583–15588

    Article  Google Scholar 

  26. Jianjian Shi WS, Jin Wei, Yin Guangqiang (2015) Diffusion of lithium in α-Sn and β-Sn as anode materials for lithium ion batteries. Inter J Electrochem Sci Technol Adv Mater 10:4793–4800

    Google Scholar 

  27. Genser O, Hafner J (2001) Structure and bonding in crystalline and molten Li–Sn alloys: a first-principles density-functional study. Phys Rev B 63(14):144204

    Article  Google Scholar 

  28. Zhang T, Fu LJ, Gao J, Wu YP, Holze R, Wu HQ (2007) Nanosized tin anode prepared by laser-induced vapor deposition for lithium ion battery. J Power Sources 174:770–773

    Article  Google Scholar 

  29. Xie J, Imanishi N, Hirano A, Takeda Y, Yamamoto O, Zhao XB, Cao GS (2010) Li-ion diffusion behavior in Sn, SnO and SnO2 thin films studied by galvanostatic intermittent titration technique. Solid State Ionics 181:1611–1615

    Article  Google Scholar 

  30. Soler JM, Artacho E, Gale JD, Garcia A, Junquera J, Ordejon P, Sanchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys-Condens Mat 14:2745–2779

    Article  Google Scholar 

  31. Legrain F, Malyi O, Manzhos S (2015) Insertion energetics of lithium, sodium, and magnesium in crystalline and amorphous titanium dioxide: a comparative first-principles study. J Power Sources 278:197–202

    Article  Google Scholar 

  32. Legrain F, Malyi OI, Manzhos S (2014) Comparative computational study of the energetics of Li, Na, and Mg storage in amorphous and crystalline silicon. Comp Mater Sci 94:214–217

    Article  Google Scholar 

  33. Kim H, Chou C-Y, Ekerdt JG, Hwang GS (2011) Structure and properties of Li–Si alloys: a first-principles study. J Phys Chem C 115:2514–2521

    Article  Google Scholar 

  34. Janz GJ, Kerbs U, Siegenthaler H (1972) Molten salts: nitrates, nitrites, and mixtures: electrical conductance, density, viscosity, and surface tension data. J Phys Chem Ref Data 1:581–746

    Article  Google Scholar 

  35. Manthiram A, Chemelewski K, Lee ES (2014) A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries. Energy Environ Sci 7:1339–1350

    Article  Google Scholar 

  36. Aydinol MK, Kohan AF, Ceder G, Cho K, Joannopoulos J (1997) Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Phys Rev B 56:1354–1365

    Article  Google Scholar 

  37. Winter M, Besenhard JO (1999) Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim Acta 45:31–50

    Article  Google Scholar 

  38. Anani A, Crouch-Baker S, Huggins RA (1987) Kinetic and thermodynamic electrode materials at ambient temperature. J Electrochem Soc 134:3098–3102

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (11474047). Funding support from the UoA and CAPEX funding from Northumbria University at Newcastle upon Tyne, Royal academy of Engineering UK-Research Exchange with China and India is acknowledged. This work was carried out at National Supercomputer Center in Tianjin, and the calculations were performed on TianHe-1(A).

Funding

This study was funded by National Natural Science Foundation of China (11474047) and Royal academy of Engineering UK-Research Exchange with China and India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiguo Wang or Y. Q. Fu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Wang, Z. & Fu, Y.Q. Density functional theory study of diffusion of lithium in Li–Sn alloys. J Mater Sci 51, 3271–3276 (2016). https://doi.org/10.1007/s10853-015-9639-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9639-z

Keywords

Navigation