Skip to main content
Log in

Photocatalytic activity and colloidal stability of various combinations of TiO2/SiO2 nanocomposites

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, various combinations of TiO2 and SiO2 nanoparticles were prepared using different methods. TiO2 and SiO2 nanoparticles were separately modified by tetraethyl orthosilicate and titanium tetraisopropoxide, respectively. SiO2/TiO2 nanocomposite was synthesized through a two-step sol–gel route. A physical blend of TiO2/SiO2 nanocomposite was also prepared. The nanoparticles were characterized using FTIR spectroscopy, thermal gravimetric analysis, and X-ray diffraction technique. Specific surface area of the nanoparticles was determined using Brunauer, Emmett, and Teller method. The colloidal stability of various nanoparticles was investigated visually and instrumentally in an aqueous media. Photocatalytic activity of nanoparticles was studied through photo-degradation of rhodamine-B dyestuff, in aqueous solutions under UVA irradiation. The results showed improvement of dispersion stability along with the decrease in photocatalytic activity for silica-grafted TiO2-nanoparticles in aqueous solutions compared with the untreated particles. However, titania-grafted SiO2 nanoparticles showed reduced colloidal stability and better photocatalytic activity than their untreated counterparts. The synthesized SiO2/TiO2 nanocomposites revealed the enhanced both photocatalytic activity and colloidal stability among the others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Allen NS, Edge M, Verran J, Stratton J, Maltby J, Bygott C (2008) Photocatalytic titania based surfaces: environmental benefits. Polym Degrad Stab 93:1632–1646

    Article  Google Scholar 

  2. Zhang Y, Pan C (2011) TiO2/graphene composite from thermal reaction of graphene oxide and its photocatalytic activity in visible light. J Mater Sci 46:2622–2626. doi:10.1007/s10853-010-5116-x

    Article  Google Scholar 

  3. Daoud WA (2013) Self-cleaning materials and surfaces: a nanotechnology approach. Wiley, Chichester

    Book  Google Scholar 

  4. Nun M, Ball RJ, Bowen ChR, Kurchania R, Sharma GD (2015) Photocatalytic activity of electrophoretically deposited (EPD) TiO2 coatings. J Mater Sci 50:4822–4835. doi:10.1007/s10853-015-9022-0

    Article  Google Scholar 

  5. Augugliaro V, Loddo V, Pagliaro M, Palmisano G, Palmisano L (2010) Clean by light irradiation practical application of supported TiO2. RSC Publications, Cambridge

    Google Scholar 

  6. Ihara T, Miyoshi M, Ando M, Sugihara S, Iriyama Y (2001) Preparation of a visible-light-active TiO2 photocatalyst by RF plasma treatment. J Mater Sci 36:4201–4207. doi:10.1023/A:1017929207882

    Article  Google Scholar 

  7. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. Chem Rev 107:2891–2959

    Article  Google Scholar 

  8. Fujishima A, Zhang X, Tryk D (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63(12):515–582

    Article  Google Scholar 

  9. Savage N, Diallo MS (2005) Nanomaterials and water purification: opportunities and challenges. J Nanopart Res 7:331–342

    Article  Google Scholar 

  10. Lazar MA, Varghese S, Nair SS (2012) Photocatalytic water treatment by titanium dioxide. Catalysts. 2:572–601

    Article  Google Scholar 

  11. Parkin IP, Palgrave RG (2005) Self-cleaning coatings. J Mater Chem 15:1689–1695

    Article  Google Scholar 

  12. Sabzi M, Mirabedini SM, Zohuriaan-Mehr J, Atai M (2009) Surface modification of TiO2 nano-particles with silane coupling agent and investigation of it’s effect on the properties of polyurethane composite coating. Prog Org Coat 65:222–228

    Article  Google Scholar 

  13. Pazokifard S, Esfandeh M, Mirabedini SM, Mohseni M, Ranjbar Z (2013) Investigating the role of surface treated titanium dioxide nanoparticles on self cleaning behavior of an acrylic facade coating. J Coat Technol 10:175–187

    Article  Google Scholar 

  14. Allen NS, Edge M, Ortega A, Liauw CM, Stratton J, Mcintyre RB (2002) Behaviour of nanoparticle (ultrafine) titanium dioxide pigments and stabilisers on the photooxidative stability of water based acrylic and isocyanate based acrylic coatings. Polym Degrad Stab 78:467–478

    Article  Google Scholar 

  15. Liu Z, Davis RJ (1994) Investigation of the structure of microporous Ti–Si mixed oxides by X-ray, UV reflectance, FT-Raman, and FT-IR spectroscopies. J Phys Chem 98:1253–1261

    Article  Google Scholar 

  16. Murugan K, Rao TN, Rao GVN, Gandhi AS, Murty BS (2011) Effect of dehydration rate on non-hydrolytic TiO2 thin film processing: structure, optical and photocatalytic performance studies. Mater Chem Phys 129:810–815

    Article  Google Scholar 

  17. Schuisky M, Hårsta A, Aidla A, Kukli K, Kiisler A, Aarik J (2000) Atomic layer chemical vapor deposition of TiO2 low temperature epitaxy of rutile and anatase. J Electrochem Soc 147:3319–3325

    Article  Google Scholar 

  18. Vives S, Meunier C (2008) Influence of the synthesis route on sol–gel SiO2–TiO2 (1:1) xerogels and powders. Ceram Int 34:37–44

    Article  Google Scholar 

  19. Mahltig B, Gutmann E, Meyer DC (2011) Solvothermal preparation of nanocrystalline anatase containing TiO2 and TiO2/SiO2 coating agents for application of photocatalytic treatments. Mater Chem Phys 127:285–291

    Article  Google Scholar 

  20. Zheng YY, Ning R (2003) Effects of nanoparticles SiO2 on the performance of nanocomposites. Mater Mater Lett 57:2940–2944

    Article  Google Scholar 

  21. Dong W, Sun Y, Ma Q, Zhu L, Hua W, Lu X (2012) Excellent photocatalytic degradation activities of ordered mesoporous anatase TiO2–SiO2 nanocomposites to various organic contaminants. J Hazard Mater 229–230:307–320

    Article  Google Scholar 

  22. Huang T, Huang W, Zhou C, Situ Y, Huang H (2012) Superhydrophilicity of TiO2/SiO2 thin films: synergistic effect of SiO2 and phase-separation-induced porous structure. Surf Coat Technol 213:126–132

    Article  Google Scholar 

  23. Kim SK, Chang H, Cho K, Kil DS, Cho SW, Jang HD (2011) Enhanced photocatalytic property of nanoporous TiO2/SiO2 micro-particles prepared by aerosol assisted co-assembly of nanoparticles. Mater Lett 65:3330–3332

    Article  Google Scholar 

  24. Aguado J, van Grieken R, López-Munoz MJ, Marugán J (2006) A comprehensive study of the synthesis, characterization and activity of TiO2 and mixed TiO2/SiO2 photocatalysts. Appl Catal A 312:202–212

    Article  Google Scholar 

  25. Rasalingam S, Kibombo HS, Wu CM, Budhi S, Peng R, Baltrusaitis J, Koodali RT (2013) Influence of Ti–O–Si hetero-linkages in the photocatalytic degradation of Rhodamine B. Catal Commun 31:66–70

    Article  Google Scholar 

  26. Tobaldi DM, Tucci A, Škapin AS, Esposito L (2010) Effects of SiO2 addition on TiO2 crystal structure and photocatalytic activity. J Eur Ceram Soc 30:2481–2490

    Article  Google Scholar 

  27. Pazokifard S, Mirabedini SM, Esfandeh M, Mohseni M, Ranjbar Z (2012) Silane grafting of TiO2 nanoparticles: dispersibility and photoactivity in aqueous solutions. Surf Interface Anal 44:41–47

    Article  Google Scholar 

  28. Mazaheri L, Mirabedini SM, Esfandeh M, Pazokifard S (2012) Surface modification of silica nanoparticles with titanium tetraisopropoxide and evaluation of their photocatalytic activity. Iran J Polym Sci Technol 25:221–230

    Google Scholar 

  29. Li Z, Hou B, Xu Y, Wu D, Sun Y, Hu W (2005) Comparative study of sol–gelhydrothermal and sol–gel synthesis of titania–silica composite nanoparticles. J Solid State Chem 178:1395–1405

    Article  Google Scholar 

  30. Mahyar A (2010) Characterization and photocatalytic activity of SiO2–TiO2 mixed oxide nanoparticles prepared by sol–gel method. Indian J Chem 49:1593–1600

    Google Scholar 

  31. Vasconcelos DCL (2011) Infrared spectroscopy of titania sol-gel coatings on 316L stainless steel. Mater Sci Appl 10:1375–1382

    Google Scholar 

  32. Shao GN, Hilonga A, Jeon SJ, Lee JE, Elineema G, Quang DV (2013) Influence of titania content on the mesostructure of titania–silica composites and their photocatalytic activity. Powder Technol 233:123–130

    Article  Google Scholar 

  33. Mirabedini A, Mirabedini SM, Babalou AA, Pazokifard S (2011) Synthesis, characterization and enhanced photocatalytic activity of TiO2/SiO2 nanocomposite in an aqueous solution and acrylic based coatings. J Prog Coat 72:453–460

    Article  Google Scholar 

  34. Zhu A, Cai A, Yu Z, Zhou W (2008) Film characterization of poly (styrene–butylacrylate–acrylic acid)–silica nanocomposite. J Colloid Interface Sci 322:51–58

    Article  Google Scholar 

  35. Liu Y, Ge C, Ren M, Yin H, Wang A, Zhang D (2008) Effects of coating parameters on the morphology of SiO2-coated TiO2 and the pigmentary properties. Appl Surf Sci 254:2809–2819

    Article  Google Scholar 

  36. Xu G, Zheng Z, Wu Y, Feng N (2009) Effect of silica on the microstructure and photocatalytic properties of titania. Ceram Int 35:1–5

    Article  Google Scholar 

  37. Kim JM, Chang SM, Kong SM, Kim KS, Kim J, Kim WS (2009) Control of hydroxyl group content in silica particle synthesized by the sol-precipitation process. Ceram Int 35:1015–1019

    Article  Google Scholar 

  38. Yu J, Wang G, Cheng B, Zhou M (2007) Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders. Appl Catal B 69:171–180

    Article  Google Scholar 

  39. He C, Tian B, Zhang J (2010) Thermally stable SiO2-doped mesoporous anatase TiO2 with large surface area and excellent photocatalytic activity. J Colloid Interface Sci 344:382–389

    Article  Google Scholar 

  40. Jung K, Park S (1999) Anatase-phase titania: preparation by embedding silica and photocatalytic activity for the decomposition of trichloroethylene. J Photochem Photobiol A 127:49–54

    Article  Google Scholar 

  41. Hashemi-Nasab R, Mirabedini SM (2013) Effect of silica nanoparticles surface treatment on in situ polymerization of styrene–butyl acrylate latex. Prog Org Coat 76:1016–1023

    Article  Google Scholar 

  42. Hong SS, Lee MS, Park SS, Lee GD (2003) Synthesis of nanosized TiO2/SiO2 particles in the microemulsion and their photocatalytic activity on the decomposition of nitrophenol. Catal Today 87:99–105

    Article  Google Scholar 

  43. Park HK, Kim DK, Kim CH (1997) Effect of solvent on titania particle formation and morphology in thermal hydrolysis of TiCl4. J Am Ceram Soc 80:743–749

    Article  Google Scholar 

  44. Jung KY, Bin Park S (2000) Enhanced photoactivity of silica-embedded titania particles prepared by sol–gel process for the decomposition of trichloroethylene. Appl Catal B 25:249–256

    Article  Google Scholar 

  45. Farrokhpay S (2009) A review of polymeric dispersant stabilisation of titania pigment. Adv Colloid Interface Sci 151:24–32

    Article  Google Scholar 

  46. Neppolian B, Celik E, Anpo M, Choi H (2008) Ultrasonic-assisted pH swing method for the synthesis of highly efficient TiO2 nano-size photocatalysts. Catal Lett 125:183–191

    Article  Google Scholar 

  47. Siddiqueya IA, Ukajia E, Furusawab T, Satoa M, Suzukia N (2007) The effects of organic surface treatment by methacryloxypropyltrimethoxysilane on the photostability of TiO2. Mater Chem Phys 105:162–168

    Article  Google Scholar 

  48. Khataee AR, Kasiri MB (2010) Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: influence of the chemical structure of dyes. J Mol Catal A: Chem 328:8–26

    Article  Google Scholar 

  49. Behnajady MA, Modirshahla N (2006) Nonlinear regression analysis of kinetics of the photocatalytic decolorization of an azo dye in aqueous TiO2 slurry. Photochem Photobiol Sci 5:1078–1081

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support provided by Iran Polymer & Petrochemical Institute during the course of this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. M. Mirabedini or S. Pazokifard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khadem-Hosseini, A., Mirabedini, S.M. & Pazokifard, S. Photocatalytic activity and colloidal stability of various combinations of TiO2/SiO2 nanocomposites. J Mater Sci 51, 3219–3230 (2016). https://doi.org/10.1007/s10853-015-9633-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9633-5

Keywords

Navigation