Skip to main content
Log in

Large-scale exfoliation of hexagonal boron nitride with combined fast quenching and liquid exfoliation strategies

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A facile and efficient method has been developed to produce high yield boron nitride nanosheets (BNNSs) by a combined strategy of quenching pre-heated hexagonal boron nitride (h-BN) in an aqueous solution and subsequent liquid exfoliation. The thermal and quenching stresses promoted the exfoliation of h-BN into BNNSs and subsequent sonication of the pre-stressed h-BN led to formation of BNNSs comprising of 2–3 layers. The products were BNNSs with a thickness of less than 2 nm that was confirmed by atomic force microscopy measurements. X-ray diffraction, transmission electron microscopy and scanning electron microscopy investigations revealed the structure and the sheet-like morphology of BNNSs. The elemental composition and chemical state of the surface was analyzed by X-ray photoelectron spectroscopy. The stable dispersibility of boron nitride in mixed solvent (ethanol/water) was confirmed via UV–vis spectrophotometry. This convenient strategy provides an extensive route to produce large-scale and high-quality BNNSs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lin Y, Connell JW (2012) Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene. Nanoscale 4:6908–6939

    Article  Google Scholar 

  2. Gorbachev RV, Riaz I, Nair RR et al (2011) Hunting for monolayer boron nitride: optical and raman signatures. Small 7:465–468

    Article  Google Scholar 

  3. Ashton TS, Moore AL (2015) Three-dimensional foam-like hexagonal boron nitride nanomaterials via atmospheric pressure chemical vapour deposition. J Mater Sci 50:6220–6226

    Article  Google Scholar 

  4. Varrla E, Backes C, Paton KR et al (2015) Large-scale production of size-controlled MoS2 nanosheets by shear exfoliation. Chem Mater 27:1129–1139

    Article  Google Scholar 

  5. Lei W, Liu D, Chen Y (2015) Highly crumpled boron nitride nanosheets as adsorbents: scalable solvent-less production. Adv Mater Interfaces 2:1400529–1400534

    Article  Google Scholar 

  6. Yi M, Shen Z, Zhang W et al (2013) Hydrodynamics-assisted scalable production of boron nitride nanosheets and their application in improving oxygen-atom erosion resistance of polymeric composites. Nanoscale 5:10660–10667

    Article  Google Scholar 

  7. Ma P, Spencer JT (2014) Non-covalent stabilization and functionalization of boron nitride nanosheets (BNNSs) by organic polymers: formation of complex BNNSs-containing structures. J Mater Sci 50:313–323

    Article  Google Scholar 

  8. Miro P, Audiffred M, Heine T (2014) An atlas of two-dimensional materials. Chem Soc Rev 43:6537–6554

    Article  Google Scholar 

  9. Golberg D, Bando Y, Huang Y et al (2010) Boron nitride nanotubes and nanosheets. ACS Nano 4:2979–2993

    Article  Google Scholar 

  10. Liu F, Mo X, Gan H et al (2014) Cheap, gram-scale fabrication of BN nanosheets via substitution reaction of graphite powders and their use for mechanical reinforcement of polymers. Sci rep 4:4211–4218

    Google Scholar 

  11. Xue Y, Liu Q, He G et al (2013) Excellent electrical conductivity of the exfoliated and fluorinated hexagonal boron nitride nanosheets. Nanoscale Res Lett 8:49–56

    Article  Google Scholar 

  12. Pakdel A, Bando Y, Golberg D (2014) Nano boron nitride flatland. Chem Soc Rev 43(934):959

    Google Scholar 

  13. Pakdel A, Zhi C, Bando Y et al (2012) Low-dimentional of boron nitride. Mater Today 15:256–265

    Article  Google Scholar 

  14. Pacilé D, Meyer JC, Girit ÇÖ, Zettl A (2008) The two-dimensional phase of boron nitride: few-atomic-layer sheets and suspended membranes. Appl Phys Lett 92:133107–133110

    Article  Google Scholar 

  15. Novoselov S, Jiang D, Schedin F et al (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci U S A 102:10451–10453

    Article  Google Scholar 

  16. Li LH, Chen Y, Behan G et al (2011) Large-scale mechanical peeling of boron nitride nanosheets by low-energy ball Milling. J Mater Chem 21:11862–11867

    Article  Google Scholar 

  17. Deepika Li LH, Glushenkov AM et al (2014) High-efficient production of boron nitride nanosheets via an optimized ball milling process for lubrication in oil. Sci Rep 4:7288–7293

    Article  Google Scholar 

  18. Gao G, Gao W, Cannuccia E et al (2012) Artificially stacked atomic layers: toward new van der waals solids. Nano Lett 12:3518–3525

    Article  Google Scholar 

  19. Zhi C, Bando Y, Tang C et al (2009) Large scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv Mater 21:2889–2893

    Article  Google Scholar 

  20. Müller F, Hüfner S, Sachdev H et al (2010) Epitaxial growth of hexagonal boron nitride on Ag (111). Phys Rev B 82:113406–113410

    Article  Google Scholar 

  21. Dı´az JG, Ding Y, Koitz R, JG et al (2013) Hexagonal boron nitride on transition metal surfaces. Theor Chem Acc 132:1350–1367

    Article  Google Scholar 

  22. Song L, Ci L, Lu H et al (2010) Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett 10:3209–3215

    Article  Google Scholar 

  23. Li X, Hao X, Zhao M et al (2013) Exfoliation of hexagonal boron nitride by molten hydroxides. Adv Mater 25:2200–2204

    Article  Google Scholar 

  24. Müller F, Hüfner S, Sachdev H et al (2010) Epitaxial growth of hexagonal boron nitride monolayers by a three-step boration–oxidation–nitration process. Phys Rev B 82:075405–075416

    Article  Google Scholar 

  25. Kim KK, Hsu A, Jia X et al (2012) Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett 12:161–166

    Article  Google Scholar 

  26. Han WQ, Wu L, Zhu Y et al (2008) Structure of chemically derived mono- and few-atomic-layer boron nitride sheets. Appl Phys Lett 93:223103

    Article  Google Scholar 

  27. Lu F, Wang F, Gao W et al (2013) Aqueous soluble boron nitride nanosheets via anionic compound-assisted exfoliation. Mater Express 3:144–150

    Article  Google Scholar 

  28. Zhou KG, Mao NN, Wang HX et al (2011) A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. Angew Chem Int Ed 50:10839–10842

    Article  Google Scholar 

  29. Wang Y, Shi Z, Yin J (2011) Large-scale exfoliation in methanesulfonic acid and their composites with polybenzimidazole. J Mater Chem 21:11371–11377

    Article  Google Scholar 

  30. Štengl V, Henych J, Kormunda M (2014) Self-assembled BN and BCN quantum dots obtained from high intensity ultrasound exfoliated nanosheets. Sci Adv Mater 6:1106–1116

    Article  Google Scholar 

  31. Coleman JN, Lotya M, O’Neill A et al (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331:568–571

    Article  Google Scholar 

  32. C´avar E, Westerstrom R, Mikkelsen A et al (2008) A single h-BN layer on Pt (111). Surf Sci 602:1722–1726

    Article  Google Scholar 

  33. Müller F, Hüfner S, Sachdev H et al (2010) Epitaxial growth of hexagonal boron nitride on Ag (111). Phys Rev B 82:113406–113409

    Article  Google Scholar 

  34. Preobrajenski AB, Vinogradov AS, Martensson N (2005) Monolayer of h-BN chemisorbed on Cu (111) and Ni (111):the role of the transition metal 3d states. Surf Sci 582:21–30

    Article  Google Scholar 

  35. Pacil D, Meyer JC, Girit CO et al (2008) The two-dimensional phase of boron nitride: few-atomic-layer sheets and suspended membranes. Appl Phys Lett 92:133107–133109

    Article  Google Scholar 

  36. Jin C, Lin F, Suenaga K et al (2009) Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys Rev Lett 102:195505–195508

    Article  Google Scholar 

  37. Li LH, Chen Behan Y, Zhang G et al (2011) Large-scale mechanical peeling of boron nitride nanosheets by low-energy ball milling. J Mater Chem 21:11862–11866

    Article  Google Scholar 

  38. Lin Y, Williams TV, Xu TB et al (2011) Aqueous dispersions of few-layered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis: critical role of water. J Phys Chem C 115:2679–2685

    Article  Google Scholar 

  39. Polyakov AA (1995) Quenching properties of parts having stress concentrators. Met Sci Heat Treat 37:324–325

    Article  Google Scholar 

  40. Zapp KH, Wostbrock KH, Schäfer M et al (2000) Ammonium compounds. Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH

    Book  Google Scholar 

  41. Tang YB, Lee CS, Chen ZH et al (2009) High-quality graphenes via a facile quenching method for field–effect transistors. Nano Lett 9:1374–1377

    Article  Google Scholar 

  42. Yi M, Shen Z, Ma S et al (2012) A mixed solvent strategy for facile and green preparation of garphene by liquid-phase exfoliation of graphite. J Nanopart Res 14:1003–1013

    Article  Google Scholar 

  43. Xu M, Liang T, Shi M et al (2013) Graphene-like two-dimensional materials. Chem Rev 113:3766–3798

    Article  Google Scholar 

  44. Watanabe K, Taniguchi T, Kanda H (2004) Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat Mater 3:404–409

    Article  Google Scholar 

  45. Blase X, Rubio A, Louie SG et al (1995) Quasiparticle band structure of bulk hexagonal boron nitride and related systems. Phys Rev B 51:6868–6875

    Article  Google Scholar 

  46. Paton KR, Varrla E, Backes C et al (2014) Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater 13:624–630

    Article  Google Scholar 

  47. Zhi C, Bando Y, Tang C et al (2009) Soluble, exfoliated hexagonal boron nitride nanosheets. Adv Mater 21:2889–2893

    Article  Google Scholar 

  48. Deshmukh K, Joshi GM (2015) Embedded capacitor applications of graphene oxide reinforced poly(3,4-ethylenedioxythiophene)–tetramethacrylate (PEDOTTMA) composites. J Mater Sci Mater Electron 26:5896–5909

    Article  Google Scholar 

  49. Miyake S, Wang M (2015) Nanoprocessing of layered crystalline materials by atomic force microscopy. Nanoscale Res Lett 10:123–138

    Article  Google Scholar 

  50. Lin Y, Williams TW, Connell JW (2010) Soluble, exfoliated hexagonal boron nitride nanosheets. J Phys Chem Lett 1:277–283

    Article  Google Scholar 

  51. Shih CJ, Vijayaraghavan A, Krishnan R et al (2011) Bi- and trilayer graphene solutions. Nat Nanotech 6:439–445

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Javad Ahmadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafiei-Sarmazdeh, Z., Jafari, S.H., Ahmadi, S.J. et al. Large-scale exfoliation of hexagonal boron nitride with combined fast quenching and liquid exfoliation strategies. J Mater Sci 51, 3162–3169 (2016). https://doi.org/10.1007/s10853-015-9626-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9626-4

Keywords

Navigation