Skip to main content
Log in

Growth, structure peculiarities, and dielectric properties of ferroelectric KDP/TiO2 single crystals

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Potassium dihydrogen phosphate KH2PO4 (KDP) single crystals, both pure and with incorporated titanium dioxide TiO2 nanoparticles, are ferroelectric materials with dipole structure used in nonlinear optics, optoelectronics, and acoustooptics. To date, a comprehensive analysis of structural features and defect states in the KDP and KDP/TiO2 matrix is absent in literature data. Pure KH2PO4 (KDP) single crystals and KDP/TiO2 crystals with different TiO2 nanoparticles with anatase structure, synthesized by the sulfate and chloride methods, and with η-TiO2 structure, prepared by the sulfate method, grown by the temperature lowering method and cut from the pyramidal and prismatic growth sectors, have been investigated by the X-ray diffraction methods and by EDX spectroscopy. According to the energy-dispersive X-ray microanalysis, the sulfur content is higher in the sample with η-TiO2 and in the KDP/η-TiO2 crystal if compared with the samples with anatase and KDP/TiO2 (anatase). It was revealed that the sulfur content is higher in the prismatic growth sector if compared with the pyramidal one. Based on results of the X-ray single-crystal diffraction analysis, it is possible to assume the substitution of \( \text{PO}_{4}^{3 - } \) tetrahedra by \( \text{SO}_{4}^{2 - } \) ones in the KDP/TiO2 structures, which is greater in KDP/η-TiO2. The general composition of the KDP/η-TiO2 crystal from the prismatic growth sector with the highest titanium content can be written as \( (\text{K}_{0.950(1)} \square_{0.050} )\text{Ti}_{0.052\left( 2 \right)i} \left( {\text{H}_{2 - x}^{1 + } \square_{x} } \right)\left[ {\left( {\text{PO}_{4} } \right)_{y}^{3 - } \left( {\text{SO}_{4}^{2 - } } \right)_{1 - y} } \right] (\square \text{ - vacancies}). \) It was first found that the Ti4+ ions occupy the interstitial site (−0.048, 0.045, 0.550) in the KDP crystal matrix. Analysis of frequency-dependant dielectric characteristics revealed that the incorporation of TiO2 nanoparticles reduces the dielectric permittivity values of KDP/TiO2 samples compared with the pure KDP ones. It was found that the KDP/η-TiO2 sample has the smallest value of the dielectric permittivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Eimerl D (1987) Electro-optic, linear, and non-linear optical properties of KDP and its isomorphs. Ferroelectrics 72:95–139. doi:10.1080/00150198708017942

    Article  Google Scholar 

  2. Gayvoronsky VY, Kopylovsky MA, Yatsyna VO, Rostotsky AI, Brodyn MS, Pritula IM (2012) Photoinduced refractive index variation in the KDP single crystals with incorporated TiO2 nanoparticles under CW laser excitation. Ukr J Phys 57(2):159–165

    Google Scholar 

  3. Bacon GE, Pease RS (1953) A neutron diffraction study of dihydrogen phosphate by Fourier synthesis. Proc R Soc A220:397–421

    Article  Google Scholar 

  4. Nelmes RJ, Meyer GM, Tibballs JE (1982) The crystal structure of tetragonal KH2PO4 and KD2PO4 as a function of temperature. J Phys C Solid State Phys 15:59–75. doi:10.1088/0022-3719/15/1/005

    Article  Google Scholar 

  5. Bornarel J (1987) Domains in KH2PO4. Ferroelectrics 71:255–268. doi:10.1080/00150198708224840

    Article  Google Scholar 

  6. Suvorova EI, Klechkovskaya VV (1993) Transmission electron microscopy study of KDP crystals. Ferroelectrics 144:245–253. doi:10.1080/00150199308008650

    Article  Google Scholar 

  7. Ichikawa M, Amasaki D, Gustafsson T, Olovsson I (2001) Structural parameters determining the transition temperature of tetragonal KH2PO4-type crystals. Phys Rev B Condens Matter 64(10):100101. doi:10.1103/PhysRevB.64.100101

    Article  Google Scholar 

  8. Pritula IM, Kolybayeva MI, Salo VI, Puzikov VM (2007) Defects of large-size KDP single crystals and their influence on degradation of the optical properties. Opt Mater 30(1):98–100. doi:10.1016/j.optmat.2006.11.003

    Article  Google Scholar 

  9. Dhanaraj PV, Mathew Santheep K, Rajesh NP (2008) Nucleation studies and characterization of potassium dihydrogen phosphate single crystals with l-arginine monohydrochloride as additive. J Cryst Growth 310(10):2532–2536. doi:10.1016/j.jcrysgro.2007.12.001

    Article  Google Scholar 

  10. Zaitseva NP, De Yoreo JJ, Dehaven MR, Vital RL, Montgomery KE, Richardson M, Atherton LG (1997) Rapid growth of large-scale (40–55 cm) KH2PO4 crystals. J Cryst Growth 180:255–262. doi:10.1016/S0022-0248(97)00223-6

    Article  Google Scholar 

  11. Nakatsuka M, Fujioka K, Kanabe T, Fujita H (1997) Rapid growth over 50 mm/day of water-soluble KDP crystal. J Cryst Growth 171(3):531–537. doi:10.1016/S0022-0248(96)00675-6

    Article  Google Scholar 

  12. Pritula I, Gayvoronsky V, Kopylovsky M, Kolybaeva M, Puzikov V, Kosinova A, Tkachenko V, Tsurikov V, Konstantiniva T, Pogibko V (2008) Growth and characterization of KH2PO4 single crystals doped with TiO2 nanocrystals. Funct Mater 15(3):420–428

    Google Scholar 

  13. Pritula I, Gayvoronsky V, Kolybaeva M et al (2010) Effect of incorporation of titanium dioxide nanocrystals on bulk properties of KDP crystals. Opt Mater 33(4):623–630. doi:10.1016/j.optmat.2010.11.022

    Article  Google Scholar 

  14. Gayvoronsky V, Galas A, Shepelyavyy E et al (2005) Giant nonlinear optical response of nanoporous anatase layers. Appl Phys B 80:97–100. doi:10.1007/s00340-004-1676-2

    Article  Google Scholar 

  15. Gayvoronsky VY, Kopylovsky MA, Vishnyakov EA (2009) Optical and nonlinear optical characterization of nanostructured oxyhydroxide of aluminium. Funct Mater 16(2):136–140

    Google Scholar 

  16. Ganduglia-Pirovano MV, Hofmann A, Sauer J (2007) Oxygen vacancies in transition metal and rare earth oxides: current state of understanding and remaining challenges. Surf Sci Rep 62:219–270. doi:10.1016/j.surfrep.2007.03.002

    Article  Google Scholar 

  17. Kosinova AV, Kolybaeva MI, Bezkrovnaya ON, Tkachenko VF, Grishina EV et al (2014) Structural and mechanical properties of KH2PO4 single crystals with embedded nanoparticles and organic molecules. Cryst Res Technol 49(12):965–974. doi:10.1002/crat.201400285

    Article  Google Scholar 

  18. Obolenskaya LN, Kuz’micheva GM, Savinkina EV, Sadovskaya NV, Zhilkina AV, Prokudina NA, Chernyshev VV (2012) Influence of the conditions of the sulfate method on the characteristics of nanosized anatase-type samples. Russ Chem Bull 61(11):2032–2038. doi:10.1007/s11172-012-0286-0

    Article  Google Scholar 

  19. Ismagilov ZR, Tsikoza LT, Shikina NV, Zarytova VF, Zinoviev VV, Zagrebelnyi SN (2009) Synthesis and stabilization of nano-sized titanium dioxide. Russ Chem Rev 78(9):873–885. doi:10.1070/RC2009v078n09ABEH004082

    Article  Google Scholar 

  20. Zhurov VV, Ivanov SA (1997) PROFIT computer program for processing powder diffraction data on an IBM PC with a graphic user interface. Crystallogr Rep 42(2):239–243

    Google Scholar 

  21. Farrugia LG (1999) WinGX suite for small-molecule single-crystal crystallography. J Appl Cryst 32:837–838. doi:10.1107/S0021889899006020

    Article  Google Scholar 

  22. Sheldrick GM (2008) A short history of SHELX. Acta Cryst A 64:112–122. doi:10.1107/S0108767307043930

    Article  Google Scholar 

  23. Müller P, Herbst-Irmer R, Spek AL et al (2006) Crystal structure refinement: a crystallographer’s guide to SHELXL. Oxford University Press, Oxford

    Book  Google Scholar 

  24. Kuzmicheva GM, Gainanova AA, Orekhov AS et al (2014) Peculiarities of the microstructure of a nanoscale modification of η-TiO2. Crystallogr Rep 59(6):916–922. doi:10.1134/S1063774514050101

    Article  Google Scholar 

  25. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32(6):751–767. doi:10.1107/S0567739476001551

    Article  Google Scholar 

  26. Malakhova LF, Furmanova NG, Vilensky AI, Grigorieva MS, Simonov VI, Rudneva EB, Voloshin AE (2009) Structural features of the KH2 PO4: Cr single crystal. Crystallogr Rep 54(2):211–218. doi:10.1134/S1063774509020084

    Article  Google Scholar 

  27. Barrett NT, Lamble GM, Roberts KJ et al (1989) Glancing angle EXAFS investigation of the habit modification of ADP by the incorporation of iron. J Cryst Growth 94:689–696. doi:10.1016/0022-0248(89)90093-6

    Article  Google Scholar 

  28. Eremina TA, Kuznetsov VA, Okhrimenko TM, Furmanova NG (1996) The mechanism of incorporating impurities into KDP-group crystals. Crystallogr Rep 41(4):680–684

    Google Scholar 

  29. Eremina TA, Kuznetsov VA, Okhrimenko TM, Furmanova NG, Eremin NN, Urusov VS (1998) Modeling of a defect region in KDP crystals doped with trivalent iron. Crystallogr Rep 43(5):852–857

    Google Scholar 

Download references

Acknowledgements

This work was carried out as a part of a state task of the Ministry of Education and Science of Russian Federation (No. 4.745.2014/K; 2014-2016). X-ray studies were fulfilled using a STOE Stadi Vari PILATUS 100 K single-crystal diffractometer purchased by MSU Development Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina A. Kaurova.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuz’micheva, G.M., Timaeva, O.I., Rybakov, V.B. et al. Growth, structure peculiarities, and dielectric properties of ferroelectric KDP/TiO2 single crystals. J Mater Sci 51, 3045–3055 (2016). https://doi.org/10.1007/s10853-015-9615-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9615-7

Keywords

Navigation