Skip to main content
Log in

Vulcanization, centrifugation, water-washing, and polymeric covering processes to optimize natural rubber membranes applied to microfluidic devices

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Natural rubber microfluidic devices are based on the replication of microchannels and chambers through the casting of latex and combine the flexibility and transparency of the polymeric platform. Natural rubber is a proposed alternative material to prepare microfluidic devices, owing to the advantages of flexibility, eco-friendliness, and lower cost compared to other commonly used polymeric microfluidic materials. However, the challenges for the use of natural rubber are the leaching of compounds when it is in contact with fluids, the low stretching resistance, and the decreases of transparency rate in terms of the water absorption rate. To overcome these issues, we report the evaluation of the essential mechanical, optical, and structural properties of natural rubber for centrifuged and pre-vulcanized rubber membranes, as well as the polymeric coating over the membrane surfaces. We propose the centrifugation process for decreasing the leach composition of the natural rubber platform and vulcanization to improve the mechanical resistance of the polymeric membrane devices. The polymeric coating prevents the leaching of compounds from natural rubber membranes and water absorption without significant reduction in transparency or increase in the hydrophobicity of the surface. Once the centrifuging, vulcanization, and coating processes improve the rubber properties, this polymer will become an alternative flexible and low-cost material for microfluidic technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Scherillo G, Lavorgna M, Buonocore GG, Zhan YH, Xia HS, Mensitieri G, Ambrosio L (2014) Tailoring assembly of reduced graphene oxide nanosheets to control gas barrier properties of natural rubber nanocomposites. ACS Appl Mater Interfaces 6:2230–2234

    Article  Google Scholar 

  2. Lin T, Ma S, Lu Y, Guo B (2014) New design of shape memory polymers based on natural rubber crosslinked via oxa-Michael reaction. ACS Appl Mater Interfaces 6:5695–5703

    Article  Google Scholar 

  3. Quitmann D, Gushterov N, Sadowski G, Katzenberg F, Tiller JC (2014) Environmental memory of polymer networks under stress. Adv Mater 26:3441–3444

    Article  Google Scholar 

  4. Quitmann D, Gushterov N, Sadowski G, Katzenberg F, Tiller JC (2013) Solvent-sensitive reversible stress-response of shape memory natural rubber. Appl Mater Interfaces 5:3504–3507

    Article  Google Scholar 

  5. Qiu T, Zeng Q, Ao N (2014) Preparation and characterization of chlorinated nature rubber (CNR) based polymeric quaternary phosphonium salt bactericide. Mater Lett 122:13–16

    Article  Google Scholar 

  6. Zhang Y, Xue X, Zhang Z, Liu Y, Li G (2014) Morphology and antibacterial properties of natural rubber composites based on biosynthesized nanosilver. J Appl Polym Sci. doi:10.1002/APP.40746

    Google Scholar 

  7. Cottinet P-J, Guyomar D, Galineau J, Sebald G (2012) Electro-thermo-elastomers for artificial muscles. Sens Actuators A 180:105–112

    Article  Google Scholar 

  8. Flory PJ (1944) Network structure and the elastic properties of vulcanized rubber. Chem Rev 35:51–75. doi:10.1021/cr60110a002

    Article  Google Scholar 

  9. Hasan A, Rochmadi SH, Honggokusumo S (2013) Vulcanization kinetics of natural rubber based on free sulfur determination. Indones J Chem 13:21–27

    Google Scholar 

  10. Perrella FW, Gaspari AA (2002) Natural rubber latex protein reduction with an emphasis on enzyme treatment. Methods 27:77–86

    Article  Google Scholar 

  11. Meade BJ, Weissman DN, Beezhold DH (2002) Latex allergy: past and present. Int Immunopharmacol 2:225–238

    Article  Google Scholar 

  12. Knop KJ, Bridts CH, Verweij MM, Hagendores MM, de Clerck LS, Stevens WJ, Ebo DG (2010) Component-resolved allergy diagnosis by microarray: potential, pitfalls, and prospects. Adv Clin Chem 50:87–101

    Article  Google Scholar 

  13. Cabrera FC, Souza JCP, Job AE, Crespilho FN (2014) Natural-rubber-based flexible microfluidic device. RSC Adv 4:35467–35475

    Article  Google Scholar 

  14. Cabrera FC, Melo AFAA, Souza JCP, Job AE, Crespilho FN (2015) A flexible lab-on-a-chip for the synthesis and magnetic separation of magnetite decorated with gold nanoparticles. Lab Chip 15:1835–1841

    Article  Google Scholar 

  15. Vasdekis AE, Wilkins MJ, Grate JW, Kelly RT, Konopka AE, Xantheas SS, Chang T-M (2014) Solvent immersion imprint lithography. Lab Chip 14:2072–2080

    Article  Google Scholar 

  16. Ahn CH, Choi J-W, Beaucage G, Nevin JH, Lee J-B, Puntambekar A, Lee JY (2004) Disposable smart lab on a chip for point-of-care clinical diagnostics. Proc IEEE 92:154–173

    Article  Google Scholar 

  17. Sakamoto H, Hatsuda R, Miyamura K, Sugiyama S (2012) Plasma separation PMMA device driven by capillary force controlling surface wettabilitys. Micro Nano Lett 7:64–67

    Article  Google Scholar 

  18. Chhina SK, Perez CF, Parameswaran M (2012) Microfluidic system to detect DNA amplicons using agglutination technique. J Micromech Microeng 22:1–8

    Article  Google Scholar 

  19. Moriuchi T, Sumida S, Furuya A, Morishima K, Furukawa Y (2009) Direct photosynthetic/metabolic biofuel cell for mobile use. Int J Precis Eng Manuf 10:75–78

    Article  Google Scholar 

  20. Song W, Vasdekis AE, Psaltis D (2012) Elastomer based tunable optofluidic devices. Lab Chip 12:3590–3597

    Article  Google Scholar 

  21. Alvankarian J, Majlis BY (2012) A new UV-curing elastomeric substrate for rapid prototyping of microfluidic devices. J Micromech Microeng 22:1–15

    Article  Google Scholar 

  22. Foudeh AM, Didar TF, Veresa T, Tabrizian M (2012) Microfluidic designs and techniques using lab-on-a-chip devices for pathogen detection for point-of-care diagnostics. Lab Chip 12:3249–3266

    Article  Google Scholar 

  23. Liu F, Nordin AN, Li F, Voiculescu I (2014) A lab-on-chip cell-based biosensor for label-free sensing of water toxicants. Lab Chip 14:1270–1280

    Article  Google Scholar 

  24. Chiriacó MS, Primiceri E, D´Amone E, Ionescu RE, Rinaldi R, Maruccio G (2011) EIS microfluidic chips for flow immunoassay and ultrasensitive cholera toxin detection. Lab Chip 11:658–663

    Article  Google Scholar 

  25. Kim DN, Lee Y, Koh W-G (2009) Fabrication of microfluidic devices incorporating bead-based reaction and microarray-based detection system for enzymatic assay. Sensors and Actuators B 137:305–312

    Article  Google Scholar 

  26. Zheng W, Jiang B, Wang D, Zhang W, Wang Z, Jiang X (2012) A microfluidic flow-stretch chip for investigating blood vessel biomechanics. Lab Chip 12:3441–3450

    Article  Google Scholar 

  27. Faita FL, Dotto MER, França LG, Cabrera FC, Job AE, Bechtold IH (2014) Characterization of natural rubber membranes using scaling laws analysis. Eur Polym J 50:249–254

    Article  Google Scholar 

  28. ASTM D 412 (2013) Test methods for vulcanized rubber and thermoplastic elastomers–tension. ASTM international

  29. Mrué F, Netto JC, Ceneviva R, Lachat JJ, Thomazini JA, Tambelini H (2004) Evaluation of the biocompatibility of a new biomembrane. Mater Res 7:277–283

    Article  Google Scholar 

  30. Ferreira M, Mendonça RJ, Coutinho-Netto J, Mulato M (2009) Angiogenic properties of natural rubber latex biomembranes and the serum fraction of hevea brasiliensis. Braz J Phys 39:564–569

    Article  Google Scholar 

  31. Kubo M, Li X, Kim C, Hashimoto M, Wiley BJ, Ham D, Whitesides GM (2010) Stretchable microfluidic radiofrequency antennas. Adv Mater 22:2749–2752

    Article  Google Scholar 

  32. Johnston ID, McCluskey DK, Tan CKL, Tracey MC (2014) Mechanical characterization of bulk sylgard 184 for microfluidics and microengineering. J Micromech Microeng 24:1–7

    Article  Google Scholar 

  33. Leela E, Muhamed AP (2006) Assessment of biodeterioration of rubber wood exposed to field conditions. Int Biodeterior Biodegradation 57:31–36

    Article  Google Scholar 

  34. Blackley DC (1997) Polymers latices, vol 2. Chapman & Hall, Glasgow

    Book  Google Scholar 

  35. Sethuraj MR, Mathew NM (1992) Natural rubber. biology, cultivation and tehchnology. Elsevier Science, Netherlands

    Google Scholar 

  36. Say HT, Nguyen N-T, Chua YC, Kang TG (2010) Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel. Biomicrofluidics 4:032204-1–032204-8

    Google Scholar 

  37. Hwee EA (2014) (Chapter 3) non-rubbers and abnormal groups in natural rubber. In: Thomas S, Chan CH, Pothen LA, Rajisha KR, Hanna JM (eds) Natural rubber materials, vol. 1: blends and IPNs, vol 7., RSC polymer chemistry seriesRSC Publishing, Cambridge

    Google Scholar 

  38. Li S-D, Yu H-P, Zhu C-S, Li P-S (2000) Study on thermal degradation of sol and gel of natural rubber. J Appl Polym Sci 75:1339–1344

    Article  Google Scholar 

  39. Agostini DLS, Constantino CJL, Job AE (2008) Thermal degradation of both latex and latex cast films forming membranes combined TG/FTIR investigation. J Therm Anal Calorim 91:703–707

    Article  Google Scholar 

  40. Yeang HY, Sunderasan E, Ghazali HM (1995) Latex allergy studies: extraction of natural rubber latex proteins with reference to film thickness, latex DRC and protein migration behaviour. J Nat Rubber Res 10:46–62

    Google Scholar 

  41. Seager SL, Slabaugh MR (1999) Organic and biochemistry for today, 4th edn. Brooks/Cole - Thomson Learning, Belmont, USA

    Google Scholar 

  42. De Paoli, M.A. Degradação e Estabilização de Polímeros, Ed 2. João Carlos de Andrade (editor). 2008

  43. Amnuaypornsri S, Sakdapipanich J, Tanaka Y (2010) Highly purified natural rubber by saponificaion of latex: analysis of green and cured properties. J Appl Polym Sci 118:3524–3531

    Article  Google Scholar 

  44. Nallasamy P, Mohan S (2004) Vibrational Spectra of Cis-1,4-Polyisoprene. The Arab J Sci Eng 29:17–26

    Google Scholar 

  45. Healey AM, Hendra PJ, West YD (1996) A fourier-transform Raman study of the strain-induced crystallization and cold crystallization of natural rubber. Polymer 37:4009–4024

    Article  Google Scholar 

  46. Kong J, Yu S (2007) Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin 39:549–559

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Brazilian agencies for financial supports of their research activities: FAPESP (F. C. Cabrera—Doctoral Fellowship number 2011/23362-0; F. N. Crespilho—project numbers 2013/14262-7 and 2013/04663-4; and A. E. Job—project number 2013/01066-9), CNPq (F. N. Crespilho project numbers 306106/2013-2 and 478525/2013-3), and the INEO and Nanomedicine Networks (NanoBio-Net and NanoBioMed-Brazil, CAPES). The authors are also grateful to Prof. Dr. Ricardo F. Aroca and Windsor University for the AFM microscopy analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo E. Job.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabrera, F.C., Dognani, G., Faita, F.L. et al. Vulcanization, centrifugation, water-washing, and polymeric covering processes to optimize natural rubber membranes applied to microfluidic devices. J Mater Sci 51, 3003–3012 (2016). https://doi.org/10.1007/s10853-015-9611-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9611-y

Keywords

Navigation