Skip to main content
Log in

Atomistic modeling of the dissociation of a screw dislocation in silicon

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The nature of dislocations involved in the plastic deformation of semiconductors is different in high- and low-temperature domains. Experimental investigations have not allowed to discriminate between dissociation and nucleation as the main reason behind this transition. In this work, the mechanisms leading to the dissociation of a screw dislocation in silicon, determined by means of atomistic calculations, are described. It is shown that kink pair formation, followed by successive kink migrations, leads to the formation of two 30° partial dislocations from the screw dislocation core. These mechanisms are structurally very similar to those involved in the formation and migration of kinks in the case of a single 30° partial dislocation, because of the close resemblance between the screw and 30° dislocation cores. The calculated activation energy of the whole process is 2.14 eV, thus quite comparable to the energies involved in the propagation of partial dislocations. This shows that dissociation and nucleation processes are likely to be activated at similar temperature ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hirth JP, Lothe J (1982) Theory of dislocations. Wiley, New York

    Google Scholar 

  2. Masolin A, Bouchard PO, Martini R, Bernacki M (2013) Thermo-mechanical and fracture properties in single-crystal silicon. J. Mater. Sci. 48:979. doi:10.1007/s10853-012-6713-7

    Article  Google Scholar 

  3. Han X, Zheng K, Zhang Y, Zhang X, Zhang Z, Wang ZL (2007) Low-temperature in situ large-strain plasticity of silicon nanowires. Adv. Mater. 19(16):2112

    Article  Google Scholar 

  4. Gordon M, Baron T, Dhalluin F, Gentile P, Ferret P (2009) Size effects in mechanical deformation and fracture of cantilevered silicon nanowires. Nanoletters 9(2):525

    Article  Google Scholar 

  5. Tang DM, Ren CL, Wang MS, Wei X, Kawamoto N, Liu C, Bando Y, Mitome M, Fukata N, Golberg D (2012) Mechanical properties of si nanowires as revealed by in sit transmission electron microscopy and molecular dynamics simulations. Nanoletters 12:1898

    Article  Google Scholar 

  6. Kang W, Saif MTA (2013) In situ study of size and temperature dependent brittle-to-ductile transition in single crystal silicon. Adv Funct Mater 23(6):713–719

    Article  Google Scholar 

  7. Lieber C (2011) Semiconductor nanowires: a platform for nanoscience and nanotechnology. Mater Res Soc Bull 36:1052

    Article  Google Scholar 

  8. Shao R, Zheng K, Zhang Y, Li Y, Zhang Z, Han X (2012) Piezoresistance behaviors of ultra-strained sic nanowires. Appl Phys Lett 101(23):233109

    Article  Google Scholar 

  9. Michler J, Wasmer K, Meier S, Östlund F, Leifer K (2007) Plastic deformation of gallium arsenide micropillars under uniaxial compression at room temperature. Appl Phys Lett 90(4):3123

    Article  Google Scholar 

  10. Östlund F, Rzepiejewska-Malyska K, Leifer K, Hale LM, Tang Y, Ballarini R, Gerberich WW, Michler J (2009) Nanostructure fracturing: brittle-to-ductile transition in uniaxial compression of silicon pillars at room temperature. Adv. Funct. Mater. 19(15):2439–2444

    Article  Google Scholar 

  11. Korte S, Barnard J, Stearn R, Clegg W (2011) Deformation of silicon—insights from microcompression testing at 25–500 \(^\circ \)c. Int J Plast 27:1853

    Article  Google Scholar 

  12. Thilly L, Ghisleni R, Swistak C, Michler J (2012) In situ deformation of micro-objects as a tool to uncover the micro-mechanisms of the brittle-to-ductile transition in semiconductors: the case of indium antimonide. Philos. Mag. 92(25–27):3315–3325

    Article  Google Scholar 

  13. Shin C, Jin HH, Kim WJ, Park JY (2012) Mechanical properties and deformation of cubic silicon carbide micropillars in compression at room temperature. J Am Chem Soc 95(9):2944

    Google Scholar 

  14. Deneen J, Mook W, Minor A, Gerberich W, Barry Carter C (2006) In situ deformation of silicon nanospheres. J Mater Sci 41(14):4477–4483. doi:10.1007/s10853-006-0085-9

    Article  Google Scholar 

  15. Gerberich WW, Stauffer DD, Beaber AR, Tymiak NI (2012) A brittleness transition in silicon due to scale. J Mater Res 27:552–561

    Article  Google Scholar 

  16. Ishida T, Cleri F, Kakushima K, Mita M, Sato T, Miyata M, Itamura N, Endo J, Toshiyoshi H, Sasaki N, Collard D, Fujita H (2011) Exceptional plasticity of silicon nanobridges. Nanotechnology 22(35):355–704

    Article  Google Scholar 

  17. Rabier J, Montagne A, Demenet JL, Michler J, Ghisleni R (2013) Silicon micropillars: high stress plasticity. Phys Stat Sol (c) 10(1):11

    Article  Google Scholar 

  18. Izumi S, Ohta H, Takahashi C, Suzuki T, Saka H (2010) Shuffle-set dislocation nucleation in semiconductor silicon device. Philos Mag Lett 90(10):707

    Article  Google Scholar 

  19. Asaoka K, Umeda T, Arai S, Saka H (2005) Direct evidence for shuffle dislocations in si activated by indentations at 77k. Mater Sci Eng A 400–401:93

    Article  Google Scholar 

  20. Saka H, Yamamoto K, Arai S, Kuroda K (2006) In-situ tem observation of transformation of dislocations from shuffle to glide sets in si under supersaturation of interstitials. Philos Mag 86(29–31):4841

    Article  Google Scholar 

  21. Okuno T, Saka H (2013) Electron microscope study of dislocations introduced by deformation in a si between 77 and 873k. J Mater Sci 48:115. doi:10.1007/s10853-012-6860-x

    Article  Google Scholar 

  22. Suzuki T, Nishisako T, Taru T, Yasutomi T (1998) Plastic deformation of InP at temperatures between 77 and 500k. Philos Mag Lett. 77(4):173

    Article  Google Scholar 

  23. Suzuki T, Yasutomi T, Tokuoka T, Yonenaga I (1999) Plastic deformation of GaAs at low temperatures. Philos Mag A 79(11):2637

    Article  Google Scholar 

  24. Rabier J, Cordier P, Demenet JL, Garem H (2001) Plastic deformation of si at low temperature under high confining pressure. Mater Sci Eng A 309–310:74

    Article  Google Scholar 

  25. Kedjar B, Thilly L, Demenet JL, Rabier J (2010) Plasticity of indium antimonide between -176 and 400 c under hydrostatic pressure. Part i: macroscopic aspects of the deformation. Acta Mater 58:1418

    Article  Google Scholar 

  26. Rabier J, Pizzagalli L, Demenet JL (2010) Dislocations in silicon at high stress (chap. 93). In: Kubin L, Hirth JP (eds) Dislocation in solids, vol 16. Elsevier, New York, p 47

    Chapter  Google Scholar 

  27. Rabier J, Demenet JL (2005) On the nucleation of shuffle dislocations in si. Phys Stat Sol (a) 5(5):944

    Article  Google Scholar 

  28. Li Z, Picu R (2013) Shuffle-glide dislocation transformation in si. J Appl Phys 113:83–519

    Article  Google Scholar 

  29. Justo JF, Bazant MZ, Kaxiras E, Bulatov VV, Yip S (1998) Interatomic potential for silicon defects and disordered phases. Phys Rev B 58(5):2539

    Article  Google Scholar 

  30. Justo JF, Bulatov VV, Yip S (1999) Dislocation core reconstruction and its effect on dislocation mobility in silicon. J Appl Phys 86(8):4249–4257

    Article  Google Scholar 

  31. Pizzagalli L, Pedersen A, Arnaldsson A, Jónsson H, Beauchamp P (2008) Theoretical study of kinks on screw dislocation in silicon. Phys Rev B 77:064–106

    Article  Google Scholar 

  32. Guénolé J, Godet J, Pizzagalli L (2010) Determination of activation parameters for the core transformation of the screw dislocation in silicon. Model Simul Mater Sci Eng 18:065001

    Article  Google Scholar 

  33. Jónsson H, Mills G, Jacobsen KW (1998) Nudged elastic band method for finding minimum energy paths of transitions (chap. 16). In: Berne BJ, Ciccotti G, Coker DF (eds) Classical and quantum dynamics in condensed phase simulations. World Scientific, Singapore, p 385

    Chapter  Google Scholar 

  34. Henkelman G, Uberuaga BP, Jónsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113(22):9901

    Article  Google Scholar 

  35. Rifkin J http://xmd.sourceforge.net/

  36. Kubin L (2013) Dislocations, mesoscale simulations and plastic flow. Oxford series on materials modelling. Oxford University Press, London

    Book  Google Scholar 

  37. Ray I, Cockayne D (1971) The dissociation of dislocations in silicon. Proc R Soc Lond A 325:543

    Article  Google Scholar 

  38. Wessel K, Alexander H (1977) On the mobility of partial dislocations in silicon. Philos Mag 35:1523

    Article  Google Scholar 

  39. Kolar HR, Spence JCH, Alexander H (1996) Observation of moving dislocation kinks and unpinning. Phys Rev Lett 77(19):4031

    Article  Google Scholar 

  40. Lehto N, Heggie MI (1999) Modelling of dislocations in c-si. In: Hull R (ed), Properties of crystalline silicon, no. 20 in EMIS Datareviews, p 357. INSPEC, London (1999)

  41. Duesbery MS, Joos B, Michel DJ (1991) Dislocation core studies in empirical silicon models. Phys Rev B 43(6):5143

    Article  Google Scholar 

  42. Bigger JRK, McInnes DA, Sutton AP, Payne MC, Stich I, King-Smith RD, Bird DM, Clarke LJ (1992) Atomic and electronic structures of the 90\(^\circ \) partial dislocation in silicon. Phys Rev Lett 69(15):2224

    Article  Google Scholar 

  43. Bennetto J, Nunes RW, Vanderbilt D (1997) Period-doubled structure for the 90\(^\circ \) partial dislocation in silicon. Phys Rev Lett 79(2):245

    Article  Google Scholar 

  44. Lehto N, Öberg S (1998) Effects of dislocation interactions: application to the period-doubled core of the 90\(^\circ \) partial in silicon. Phys Rev Lett 80(25):5568

    Article  Google Scholar 

  45. Rabier J, Cordier P, Tondellier T, Demenet JL, Garem H (2000) Dislocation microstructures in si plastically deformed at rt. J Phys Condens Matter 12(49):10–59

    Google Scholar 

  46. Pizzagalli L, Godet J, Guénolé J, Brochard S (2012) Dislocation cores in silicon: new aspects from numerical simulations. J Phys Conf Ser 281:012002

    Article  Google Scholar 

  47. Pizzagalli L, Beauchamp P (2004) First principles determination of the Peierls stress of the shuffle screw dislocation in silicon. Philos Mag Lett 84(11):729

    Article  Google Scholar 

  48. Pizzagalli L, Beauchamp P (2008) Dislocation motion in silicon: the shuffle-glide controversy revisited. Philos Mag Lett 88(6):421

    Article  Google Scholar 

  49. Pizzagalli L, Beauchamp P, Rabier J (2003) Undissociated screw dislocations in silicon: calculations of core structure and energy. Philos Mag A 83:1191

    Article  Google Scholar 

  50. Wang CZ, Li J, Ho KM, Yip S (2006) Undissociated screw dislocation in si: glide or shuffle set? Appl Phys Lett 89:051–910

    Google Scholar 

  51. Pizzagalli L, Beauchamp P, Jónsson H (2008) Calculations of dislocation mobility using nudged elastic band method and first principles DFT calculations. Philos Mag 88(1):91

    Article  Google Scholar 

  52. Marzegalli A, Montalenti F, Miglio L (2005) Stability of shuffle and glide dislocation segments with increasing misfit in ge/si\(_{1-x}\)(001) epitaxial layers. Appl Phys Lett 86:041–912

    Article  Google Scholar 

  53. Kang K, Cai W (2007) Brittle and ductile fracture of semiconductor nanowires—molecular dynamics simulations. Philos Mag 87(14–15):2169

    Article  Google Scholar 

  54. Guénolé J, Godet J, Brochard S (2011) Deformation of silicon nanowires studied by molecular dynamics simulations. Model Simul Mater Sci Eng 19(7):074003

    Article  Google Scholar 

  55. Pizzagalli L, Godet J, Brochard S (2009) Glissile dislocations with transient cores in silicon. Phys Rev Lett 103:065–505

    Article  Google Scholar 

  56. Bulatov VV, Yip S, Argon AS (1995) Atomic modes of dislocation mobility in silicon. Philos Mag A 72(2):453

    Article  Google Scholar 

  57. Nunes RW, Bennetto J, Vanderbilt D (1998) Core reconstruction of the 90\(^\circ \) partial dislocation in nonpolar semiconductors. Phys Rev B 58(19):12563

    Article  Google Scholar 

  58. Bulatov VV, Justo JF, Cai W, Yip S, Argon AS, Lenosky T, de Koning M, de la Rubia TD (2001) Parameter-free modelling of dislocation motion: the case of silicon. Philos Mag A 81(5):1257

    Article  Google Scholar 

  59. Chou MY, Cohen ML, Louie SG (1985) Theoretical study of stacking faults in silicon. Phys Rev B 32:7979–7987

    Article  Google Scholar 

  60. Godet J, Pizzagalli L, Brochard S, Beauchamp P (2003) Comparison between classical potentials and ab initio methods for silicon under large shear. J Phys: Condens Matter 15:6943

    Google Scholar 

  61. Blumenau AT, Jones R, Frauenheim T, Willems B, Lebedev OI, Tendeloo GV, Fisher D, Martineau PM (2003) Dislocations in diamond: dissociation into partials and their glide motion. Phys Rev B 68:14115

    Article  Google Scholar 

  62. Godet J, Hirel P, Brochard S, Pizzagalli L (2009) Evidence of two plastic regimes controlled by dislocation nucleation in silicon nanostructures. J Appl Phys 105:026–104

    Article  Google Scholar 

Download references

Acknowledgements

I am indebted to Prof. Sandrine Brochard and Dr. Jacques Rabier for our discussions and their comments on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Pizzagalli.

Ethics declarations

Conflict of Interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pizzagalli, L. Atomistic modeling of the dissociation of a screw dislocation in silicon. J Mater Sci 51, 2869–2876 (2016). https://doi.org/10.1007/s10853-015-9595-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9595-7

Keywords

Navigation