Skip to main content

Processing maps for the analysis of hot workability of microalloyed steels 38MnSiVS5 and 0.39C1.47Mn

Abstract

Microalloyed steels are gaining increasing importance as substitutions for carbon steels because they possess higher mechanical properties, such as strength and toughness after hot forging, without a need for post-deformation heat treatment. To increase machinability, sulfur is added to microalloyed steels to facilitate chip removal, increase productivity, and enhance the life of cutting tools. Otherwise, the sulfide particles that benefit machinability may cause a significant loss in hot workability. Therefore, it is important to understand the effect of initial grain size, phase constituents, and inclusion content on flow stresses during hot working in order to establish ideal processing conditions, which prevent the formation of defects and simultaneously improve mechanical properties. The aim of the current study is to construct processing maps to evaluate the hot workability of microalloyed steels DIN 38MnSiVS5 and 0.39C1.47Mn in order to define the constitutive behavior of both steels under hot working and identify the safe regions for metalworking. The processing maps for both steels showed a region of instability at temperatures between 1100 and 1150 °C and the highest strain rates (namely, 10.0 and 30.0 s−1) that should be avoided. Cracks were found in the sample of 0.39C1.47Mn steel and voids were found in the central region in the DIN 38MnSiVS5 steel. These defects might be caused by MnS inclusions and are probably the cause of instability. Therefore, it can be concluded that a higher sulfur content has a negative effect on workability, and might be the cause of instability under some processing conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. 1.

    Bu FZ, Wang XM, Chen L, Yang SW, Shang CJ, Misra RDK (2015) Influence of cooling rate on the precipitation behavior in Ti–Nb–Mo microalloyed steels during continuous cooling and relationship to strength. Mater Charact 102:146–155. doi:10.1016/jmatchar201503005

    Article  Google Scholar 

  2. 2.

    Zhang X, Cai Q, Zhou G, Chen Q, Xiong Y (2011) Microstructure and mechanical properties of V-Ti–N microalloyed steel used for fracture splitting connecting rod. J Mater Sci 6:1789–1795. doi:10.1007/s10853-010-5002-6

    Article  Google Scholar 

  3. 3.

    Kim KW, Park JK (2015) A study of the dynamic recrystallization kinetics of V-microalloyed medium carbon steel. J Mater Sci 18:641–6153. doi:10.1016/s10853-015-9171-1

    Google Scholar 

  4. 4.

    Hajisafari M, Nategh S, Yoozbashizadeh H, Ekrami A (2013) Improvement in mechanical properties of microalloyed steel 30MSV6 by a precipitation hardening process. J Iron Steel Res Int 20:66–73. doi:10.1016/S1006-706X(13)60100-4

    Article  Google Scholar 

  5. 5.

    Mejía I, Altamirano G, Bedolla-Jacuinde A, Cabrera JM (2014) Modeling of the hot flow behavior of advanced ultra-high strength steels (A-UHSS) microalloyed with boron. Mater Sci Eng A 610:116–125. doi:10.1016/jmsea201404105

    Article  Google Scholar 

  6. 6.

    Wei H, Liu G, Zhao H, Zhang M (2014) Effect of carbon content on hot deformation behaviors of vanadium microalloyed steels. Mater Sci & Eng A 596:112–120. doi:10.1016/jmsea201312063

    Article  Google Scholar 

  7. 7.

    Prasad YVRK, Sasidhara S (1997) Hot working guide: a compendium of processing maps. ASM International, Materials Park

    Google Scholar 

  8. 8.

    Omar AA, Cabrera JM, Prado JM (1996) Characterization of the hot deformation in a microalloyed medium carbon steel using processing maps. Scr Mater 34:1303–1308. doi:10.1016/1359-6462(95)00651-6

    Article  Google Scholar 

  9. 9.

    Gu S, Zhang L, Ruan J, Zhou P, Zhen Y (2014) Constitutive modeling of dynamic recrystallization behavior and processing map of 38MnVS6 non-quenched steel. J Mater Eng Perform 23:1062–1068. doi:10.1007/s11665-013-0808-4

    Article  Google Scholar 

  10. 10.

    El Hassani FB, Chenaoui A, Dkiouak R, Elbakkali L, Al Omar A (2008) Characterization of deformation stability of medium carbon microalloyed steel during hot forging using phenomenological and continuum criteria. J Mater Process Technol 199:140–149. doi:10.1016/jjmatprotec200708004

    Article  Google Scholar 

  11. 11.

    Xu L, Wang C, Liu G, Bai B (2009) Hot deformation behavior of medium carbon V-N microalloyed steel. Trans of Nonferr Met Soc China 19:1389–1394. doi:10.1016/S1003-6326(09)60038-8

    Article  Google Scholar 

  12. 12.

    Wei H, Liu G (2014) Effect of Nb and C on the hot flow behavior of Nb microalloyed steels. Mater Des 56:437–444. doi:10.1016/jmatdes201311009

    Article  Google Scholar 

  13. 13.

    Stephenson DA, Agapiou JS (2005) Metal cutting theory and practice. CRC Press, Boca Raton

    Google Scholar 

  14. 14.

    Bramfitt BL, Benscoter AO (2002) Metallographer’s guide: practice and procedures for irons and steels. ASM International, Materials Park

    Google Scholar 

  15. 15.

    Opiela M, Kamińska M (2011) Influence of the rare-earth elements on the morphology of non-metallic inclusions in microalloyed steels. J Achiev Mat Manuf Eng 47:149–156

    Google Scholar 

  16. 16.

    Xiao G, Dong H, Wang M, Hui W (2011) Effect of sulfur content and sulfide shape on fracture ductility in case hardening steel. J Iron Steel Res Int 18:58–64. doi:10.1016/S1006-706X(11)60105-2

    Article  Google Scholar 

  17. 17.

    Kizu T, Urabe T (2009) Hot ductility of sulfur-containing low manganese mild steels at high strain rate. ISIJ Int 49:1424–1431

    Article  Google Scholar 

  18. 18.

    Prasad YVRK, Gegel HL, Doraivelu SM, Malas JC, Morgan JT, Lark KA, Barker DR (1984) Modeling of dynamic material behavior in hot deformation-forging of Ti-6242. Metall Trans A 15:1883–1892. doi:10.1007/BF02664902

    Article  Google Scholar 

  19. 19.

    Lenz M, Gall S, Schmack F, Mayer HM, Reimers W (2014) Hot working behavior of a WE54 magnesium alloy. J Mater Sci 49:1121–1129. doi:10.1007/s10853-013-7790-y

    Article  Google Scholar 

  20. 20.

    Quan G, Zhao L, Chen T, Wang Y, Mao Y, Lv W, Zhou J (2012) Identification for the optimal working parameters of as-extruded 42CrMo high-strength steel from a large range of strain, strain rate and temperature. Mater Sci Eng A 538:364–373. doi:10.1016/jmsea201201062

    Article  Google Scholar 

  21. 21.

    Liu Y, Ning Y, Yao Z, Guo H, Nan Y (2014) Effect of true strains on processing map for isothermal compression of Ni-200Cr-25Ti-15Nb-10Al Ni-base superalloy. J Alloys Compd 612:56–63. doi:10.1016/jjallcom201405165

    Article  Google Scholar 

  22. 22.

    Murty SVS Narayana, Rao BN, Kashyap BP (2005) Identification of flow instabilities in the processing maps of AISI 304 stainless steel. J Mater Process Technol 166:268–278. doi:10.1016/jjmatprotec200409089

    Article  Google Scholar 

  23. 23.

    Murty SVSN, Rao BN (1998) On the development of instability criteria during hotworking with reference to IN 718. Mater Sci Eng A 254:76–82. doi:10.1016/S0921-5093(98)00764-3

    Article  Google Scholar 

  24. 24.

    Sneddon IN, Hill R, Naghdi PM, Ziegler H (1963) Progress in solid mechanics. North-Holland Publishing Company, New York

    Google Scholar 

  25. 25.

    Srinivasan N, Prasad YVRK (1994) Hot-working characteristics of nichrome and the development of a processing map. J Mater Process Technol 41:409–424. doi:10.1016/0924-0136(94)90005-1

    Article  Google Scholar 

  26. 26.

    Ma XO, Zeng WD, Sun Y, Zhao YQ, Wang SL, Zhou YG (2010) A Comparative study of various flow instability criteria in processing map. Rare Met Mater Eng 39:756–761. doi:10.1016/S1875-5372(10)60096-3

    Article  Google Scholar 

  27. 27.

    Xu YM, Weins WN, Dhir A (1993) A metallographic investigation of banding and diffusion of phosphorus in steels. Metallogr Characteriz Met Weld Process Serv 20:457–470

    Google Scholar 

  28. 28.

    Lin YC, Chen MS, Zhong J (2008) Microstructural evolution in 42CrMo steel during compression at elevated temperatures. Mater Lett 62:2132–2135. doi:10.1016/jmatlet200711032

    Article  Google Scholar 

  29. 29.

    Sun L, Muszka K, Wynne BP, Palmiere EJ (2014) Effect of strain path on dynamic strain-induced transformation in microalloyed steel. Acta Mat 66:132–149. doi:10.1016/j.actamat.2013.11.062

    Article  Google Scholar 

  30. 30.

    Jorge-Badiola D, Gutierrez I (2004) Study of the strain reversal effect on the recrystallization and strain induced precipitation in a Nb-microalloyed steel. Acta Mat 52:333–341. doi:10.1016/j.actamat.2003.09.018

    Article  Google Scholar 

  31. 31.

    Ozturk F, Polat A, Toros S, Picu RC (2013) Strain hardening and strain rate sensitivity behaviors of advanced high strength steels. Iron Steel Res Int 20:68–74. doi:10.1016/S1006-706X(13)60114-4

    Article  Google Scholar 

  32. 32.

    Cyril N, Fatemi A, Cryderman R (2009) Effects of sulfur level and anisotropy of sulfide inclusions on tensile, impact, and fatigue properties of SAE 4140 steel. SAE Int Mater Manuf 1(1):218–227. doi:10.4271/2008-01-0434

    Article  Google Scholar 

  33. 33.

    Lunev VV, Pirozhkova VP (2012) Nature and diagnostics of nonmetallic inclusions in steels. Russ Metall 6:535–538. doi:10.1134/S0036029512060122

    Article  Google Scholar 

  34. 34.

    Shevtsova OA, Zyuban NA, Rutskii DV (2011) Aspects of the formation of sulfide inclusions and their effect on the quality of low-alloy structural steels. Metall 54:839–844. doi:10.1007/s11015-011-9382-x

    Article  Google Scholar 

  35. 35.

    Ma J, Zhang B, Xu DK, Han EH, Ke W (2010) Effects of inclusion and loading direction on the fatigue behavior of hot rolled low carbon steel. Int J Fatigue 32:1116–1125. doi:10.1016/jijfatigue200912005

    Article  Google Scholar 

  36. 36.

    Luo CH (2001) Evolution of voids close to an inclusion in hot deformation of metals. Comput Mater Sci 21:360–374. doi:10.1016/S0927-0256(01)00149-5

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank FAPESP (2012/23273-0 and 2013/23007-0) for the financial support and Advanced Steel Processing and Products Research Center (ASPPRC) at CSM—Colorado School of Mines for the support in samples and equipment usage during the project.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sergio Tonini Button.

Ethics declarations

Conflict of interest

Authors do not identify any potential conflicts of interest related to this work.

Ethical approval

This research did not involve human participants or animals. No figures, tables, or text passages already published elsewhere were included in this work, therefore no consent or permission was necessary.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

da Silva Septimio, R., Button, S.T. & Van Tyne, C.J. Processing maps for the analysis of hot workability of microalloyed steels 38MnSiVS5 and 0.39C1.47Mn. J Mater Sci 51, 2512–2528 (2016). https://doi.org/10.1007/s10853-015-9563-2

Download citation

Keywords

  • High Strain Rate
  • Dynamic Recrystallization
  • Microalloyed Steel
  • Dynamic Material Model
  • Power Dissipation Efficiency