Skip to main content
Log in

Construction of advanced poly(arylene ether nitrile)/multi-walled carbon nanotubes nanocomposites by controlling the precise interface

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, various covalently functionalized multi-wall carbon nanotubes (MWCNTs) such as nitrile-functionalized MWCNTs (MWCNTs-CN), phthalocyanine (Pc)-functionalized MWCNTs (MWCNTs-Pc), and magnetic MWCNTs (MWCNTs-Fe3O4) were prepared for exploring multifunctional poly(arylene ether nitrile)(PEN) nanocomposites. The morphologies and micro-structures of various functional MWCNTs were characterized by SEM and TEM. The tensile properties and dielectric properties of PEN/functional MWCNTs nanocomposites were investigated to evaluate the dispersion state, interfacial adhesion, and reinforcement efficiency of the functional MWCNTs. The results indicated that PEN/MWCNTs-Pc nanocomposites showed the higher tensile strength and modulus than PEN/MWCNTs-CN and PEN/magnetic MWCNTs nanocomposites due to its better dispersion and stronger interfacial adhesion. For the PEN composite with 2 wt% of MWCNTs-Pc, the tensile strength and modulus increased by 34.2 and 47.8 %, respectively. Owing to the synergistic effect between MWCNTs and Fe3O4 nanoparticles, the PEN nanocomposite with the magnetic MWCNTs loading content of 2 wt% showed obviously higher dielectric constant (32.3 at 1 kHz) than PEN/MWCNTs-Pc (10.1 at 1 kHz) and PEN/MWCNTs-CN (6.5 at 1 kHz) nanocomposites. Various functionalizations of MWCNTs would cause the different dispersion state and interfacial interactions which were confirmed by SEM and rheological test, thus determining the ultimate use of MWCNT-based nanocomposites in typical areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    Article  Google Scholar 

  2. Bachtold A, Hadley P, Nakanishi T, Dekker C (2001) Logic circuits with carbon nanotube transistors. Science 294:1317–1320

    Article  Google Scholar 

  3. Jeon I, Cui KH, Chiba T, Anisimov A, Nasibulin AG, Kauppinen EI, Maruyama S, Matsuo Y (2015) Direct and dry deposited single-walled carbon nanotube films doped with MoO x as electron-blocking transparent electrodes for flexible organic solar cells. J Am Chem Soc 137(25):7982–7985

    Article  Google Scholar 

  4. Tung VC, Chen LM, Allen MJ, Wassei JK, Nelson K, Kaner RB, Yang Y (2009) Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high performance transparent conductors. Nano Lett 9(5):1949–1955

    Article  Google Scholar 

  5. Bubak G, Gendron D, Ceseracciu L, Ansaldo A, Ricci D (2015) Parylene-coated ionic liquid-carbon nanotube actuators for user-safe haptic devices. ACS Appl Mater Interfaces 7(28):15542–15550

    Article  Google Scholar 

  6. Rangom Y, Tang XW, Nazar LF (2015) Carbon nanotube-based supercapacitors with excellent ac line filtering and rate capability via improved interfacial impedance. ACS Nano 9(7):7248–7255

    Article  Google Scholar 

  7. Ajayan PM, Iijima S (1993) Capillarity-induced filling of carbon nanotubes. Nature 361(6410):333–334

    Article  Google Scholar 

  8. Xie XL, Mai YW, Ping X (2005) Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater Sci Eng Rep 49:89–112

    Article  Google Scholar 

  9. Yan J, Kim B, Jeong YG (2015) Thermomechanical and electrical properties of PDMS/MWCNT composite films crosslinked by electron beam irradiation. J Mater Sci 50(16):5599–5608. doi:10.1007/s10853-015-9110-1

    Article  Google Scholar 

  10. Roy N, Sengupta R, Bhowmick AK (2012) Modifications of carbon for polymer composites and nanocomposites. Prog Polym Sci 37(6):781–819

    Article  Google Scholar 

  11. Ajayan PM, Stephan O, Colliex C, Trauth D (1994) Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 265:1212–1214

    Article  Google Scholar 

  12. Andrews R, Weisenberger MC (2004) Carbon nanotube polymer composites. Curr Opin Solid State Mater Sci 8(1):31–37

    Article  Google Scholar 

  13. Dong LB, Li Y, Wang L, Wan ZP, Hou F, Liu JC (2014) Combination effect of physical drying with chemical characteristic of carbon nanotubes on through-thickness properties of carbon fiber/epoxy composites. J Mater Sci 49(14):4979–4988. doi:10.1007/s10853-014-8200-9

    Article  Google Scholar 

  14. Coleman JN, Khan U, Gun’ko YK (2006) Mechanical reinforcement of polymers using carbon nanotubes. Adv Mater 18(6):689–706

    Article  Google Scholar 

  15. Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16):5194–5205

    Article  Google Scholar 

  16. Ashrafi B, Backman D, Johnston A, Martinez-Rubi Y, Simard B (2013) Effects of SWCNTs on mechanical and thermal performance of epoxy at elevated temperatures. J Mater Sci 48(21):7664–7672. doi:10.1007/s10853-013-7584-2

    Article  Google Scholar 

  17. Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69(10):1486–1498

    Article  Google Scholar 

  18. Bose S, Khare RA, Moldenaers P (2010) Assessing the strengths and weaknesses of various types of pre-treatments of carbon nanotubes on the properties of polymer/carbon nanotubes composites: a critical review. Polymer 51:975–993

    Article  Google Scholar 

  19. Wang HF, Wu C, Liu X, Sun J, Xia GM, Huang W (2014) Enhanced mechanical and thermal properties of poly(l-lactide) composites assisted by polydopamine-coated multiwalled carbon nanotubes. Colloid Polym Sci 292(11):2949–2957

    Article  Google Scholar 

  20. Brzezinski M, Boguslawska M, Ilcikova M, Mosnacek J, Biela T (2012) Unusual thermal properties of polylactides and polylactide stereocomplexes containing polylactide-functionalized multi-walled carbon nanotubes. Macromolecules 45(21):8714–8721

    Article  Google Scholar 

  21. Manfredi E, Meyer F, Verge P, Raquez JM, Thomassin JM, Alexandre M et al (2011) Supramolecular design of high-performance poly(l-lactide)/carbon nanotube composites: from melt-processing to rheological, morphological and electrical properties. J Mater Chem 21(40):16190–16196

    Article  Google Scholar 

  22. Sefadi JS, Luyt AS, Pionteck J, Gohs U (2015) Effect of surfactant and radiation treatment on the morphology and properties of PP/EG composites. J Mater Sci 50(18):6021–6031. doi:10.1007/s10853-015-9149-z

    Article  Google Scholar 

  23. Bayazit MK, Coleman KS (2014) Ester-functionalized single-walled carbon nanotubes via addition of haloformates. J Mater Sci 49(14):5190–5198. doi:10.1007/s10853-014-8227-y

    Article  Google Scholar 

  24. Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35(3):357–401

    Article  Google Scholar 

  25. Lai AN, Wang LS, Lin CX, Zhuo YZ, Zhang QG, Zhu AM et al (2015) Benzylmethyl-containing poly(arylene ether nitrile) as anion exchange membranes for alkaline fuel cells. J Membr Sci 481:9–18

    Article  Google Scholar 

  26. Zhan YQ, Yang XL, Guo H, Yang J, Meng FB, Liu XB (2012) Cross-linkable nitrile functionalized graphene oxide/poly(arylene ether nitrile) composite films with high mechanical strength and thermal stability. J Mater Chem 22(12):5602–5608

    Article  Google Scholar 

  27. Wang P, Yuan LT, Huang X, Chen WJ, Jia K, Liu XB (2014) Tuning of polyarylene ether nitrile emission profile by using red-emitting gold nanoclusters via fluorescence resonance energy transfer. RSC Adv 4(87):46541–46544

    Article  Google Scholar 

  28. Cao GP, Chen WJ, Wei JJ, Li WT, Liu XB (2007) Synthesis and characterization of a novel bisphthalonitrile containing benzoxazine. Express Polym Lett 1(8):512–518

    Article  Google Scholar 

  29. Zhan YQ, Yang XL, Meng FB, Wei JJ, Zhao R, Liu XB (2011) Controllable synthesis, magnetism and solubility enhancement of graphene nanosheets/magnetite hybrid material by covalent bonding. J Colloid Interface Sci 363(1):98–104

    Article  Google Scholar 

  30. Jia BP, Gao L, Sun J (2007) Self-assembly of magnetite beads along multiwalled carbon nanotubes via a simple hydrothermal process. Carbon 45(7):1476–1481

    Article  Google Scholar 

  31. Wildgoose GG, Banks CE, Compton RG (2006) Metal nanoparticles and related materials supported on carbon nanotubes: methods and applications. Small 2(2):182–193

    Article  Google Scholar 

  32. Voggu R, Suguna P, Chandrasekaran S, Rao CNR (2007) Assembling covalently linked nanocrystals and nanotubes through click chemistry. Chem Phys Lett 443(1–3):118–121

    Article  Google Scholar 

  33. He H, Zhang Y, Gao C, Wu J (2009) Clicked magnetic nanohybrids with a soft polymer interlayer. Chem Commun 13:1655–1657

    Article  Google Scholar 

  34. Ning NY, Fu SR, Zhang W, Chen F, Wang K, Deng H et al (2012) Realizing the enhancement of interfacial interaction in semicrystalline polymer/filler composites via interfacial crystallization. Prog Polym Sci 37(10):1425–1455

    Article  Google Scholar 

  35. Kim KH, Oh Y, Islam MF (2012) Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue. Nat Nanotechnol 7(9):562–566

    Article  Google Scholar 

  36. Harris JM, Iyer GR, Bernhardt AK, Huh JY, Hudson SD, Fagan JA et al (2012) Electronic durability of flexible transparent films from type-specific single-wall carbon nanotubes. ACS Nano 6(1):881–887

    Article  Google Scholar 

  37. Harris JM, Huh JY, Semler MR, Ihle T, Stafford CM, Hudson SD et al (2013) Elasticity and rigidity percolation in flexible carbon nanotube films on PDMS substrates. Soft Matter 9:11568–11575

    Article  Google Scholar 

  38. Galgali G, Ramesh C, Lele A (2001) A rheological study on the kinetics of hybrid formation in polypropylene nanocomposites. Macromolecules 34(4):852–858

    Article  Google Scholar 

  39. Gupta A, Choudhary V (2014) Effect of multi-walled carbon nanotubes on mechanical and rheological properties of poly(trimethylene terephthalate). J Mater Sci 49(10):3839–3846. doi:10.1007/s10853-014-8097-3

    Article  Google Scholar 

  40. Solomon MJ, Almusallam AS, Seefeldt KF, Somwangthanaroj A, Varadan P (2001) Rheology of polypropylene/clay hybrid materials. Macromolecules 34(6):1864–1872

    Article  Google Scholar 

  41. Lele A, Mackley M, Galgali G, Ramesh C (2002) In situ rheo-x-ray investigation of flow-induced orientation in layered silicate syndiotactic polypropylene composite melt. J Rheol 46(5):1091–1110

    Article  Google Scholar 

  42. Wu DF, Wu L, Zhang M, Zhao YL (2008) Viscoelasticity and thermal stability of polylactide composites with various functionalized carbon nanotubes. Polym Degrad Stab 93:1577–1584

    Article  Google Scholar 

  43. Hobbie EK (2010) Shear rheology of carbon nanotube suspensions. Rheol Acta 49(4):323–334

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Applied Basic Research Project in Sichuan Province (2013JY0099) and the Majorly Cultivated Project of Sci-Tech Achievements Transition (15CZ0005) from the education department in Sichuan Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingqing Zhan or Yi He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, Y., Fan, Y., Pan, Y. et al. Construction of advanced poly(arylene ether nitrile)/multi-walled carbon nanotubes nanocomposites by controlling the precise interface. J Mater Sci 51, 2090–2100 (2016). https://doi.org/10.1007/s10853-015-9519-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9519-6

Keywords

Navigation