Journal of Materials Science

, Volume 51, Issue 4, pp 1978–1984 | Cite as

Synthesis and characterization of CuInS2 nanocrystalline semiconductor prepared by high-energy milling

  • Erika Dutková
  • María J. Sayagués
  • Jaroslav Briančin
  • Anna Zorkovská
  • Zdenka Bujňáková
  • Jaroslav Kováč
  • Jaroslav KováčJr.
  • Peter Baláž
  • Jana Ficeriová
Original Paper


Nanocrystalline CuInS2 particles have been synthesized from copper, indium, and sulfur powders by high-energy milling in a planetary mill in an argon atmosphere. Structural characterization of the prepared nanoparticles, including phase identification, Raman spectroscopy, specific surface area measurement, and particle size analysis were performed. The optical properties were studied using UV–Vis absorption and photoluminescence (PL) spectroscopy. The production of CuInS2 (JCPDS 027-0159) particles with a crystallite size of about 17.5–23.5 nm was confirmed by X-ray diffraction. The crystal structure has a tetragonal body-centered symmetry belonging to the I-42d space group. The Raman spectra also proved the formation of pure CuInS2 nanoparticles. TEM and HRTEM measurements revealed the presence of nanoparticles of different dimensions (10–20 nm) and their tendency to form agglomerates. The nanoparticles tend to agglomerate due to their large specific surface area. The average size of the synthesized particles was determined by photon cross-correlation spectroscopy to be in the range of 330–530 nm (bimodal size distribution). The band gap of the CuInS2 particles is 2 eV which is wider than that in bulk materials. The decrease in size leads to the blue-shift of the PL spectra. Therefore, CuInS2 nanoparticles are promising candidates for optical applications, and they have high potential in solar energy conversion.


Milling Chalcopyrite Mechanochemical Synthesis Bimodal Size Distribution Planet Carrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The support through the Slovak Grant Agency VEGA (projects 2/0027/14, 1/0439/13, 2/0051/14) and APVV 14-0103 is gratefully acknowledged. The authors also acknowledge the support of the European Union through the CT-2011-1-REGPOT285895 AL-NANOFUN project (Advanced Laboratory for the Nano-Analysis of novel Functional materials), for the microscopy facilities sited at the Institute of Materials Science in Seville.


  1. 1.
    Green MA, Emery K, King DL, Igari S, Warta W (2002) Solar cell efficiency tables (version 20). Prog Photovolt 10(5):355–360. doi: 10.1002/Pip.453 CrossRefGoogle Scholar
  2. 2.
    Pinjari DV, Pandit AB (2010) Cavitation milling of natural cellulose to nanofibrils. Ultrason Sonochem 17(5):845–852. doi: 10.1016/j.ultsonch.2010.03.005 CrossRefGoogle Scholar
  3. 3.
    Klenk R, Klaer J, Scheer R, Lux-Steiner MC, Luck I, Meyer N, Ruhle U (2005) Solar cells based on CuInS2—an overview. Thin Solid Films 480:509–514. doi: 10.1016/j.tsf.2004.11.042 CrossRefGoogle Scholar
  4. 4.
    Kazmerski L, Ramanathan K (2005) The 14th international conference on ternary and multinary compounds. J Phys Chem Solids 66(11):1853. doi: 10.1016/j.jpcs.2005.10.171 CrossRefGoogle Scholar
  5. 5.
    Xiao JP, Xie Y, Tang R, Qian YT (2001) Synthesis and characterization of ternary CuInS2 nanorods via a hydrothermal route. J Solid State Chem 161(2):179–183. doi: 10.1006/jssc.2001.9247 CrossRefGoogle Scholar
  6. 6.
    Zhou JC, Li SW, Gong XL, Yang YL, Guo Y (2011) Preparation of CuInS2 microspheres via a facile solution-chemical method. Mater Lett 65(12):2001–2003. doi: 10.1016/j.matlet.2011.03.089 CrossRefGoogle Scholar
  7. 7.
    Kim KH, Lee JK, Alphonse A, Erkan ME, Shin DC, Lim DG, Park BO, Jin MHC (2013) Preparation of precursor particles by cryogenic mechanical milling for the deposition of CuInS2 thin films. Mater Sci Semicond Process 16(1):226–230. doi: 10.1016/j.mssp.2012.08.012 CrossRefGoogle Scholar
  8. 8.
    Amiri O, Salavati-Niasari M, Sabet M, Ghanbari D (2013) Synthesis and characterization of CuInS2 microsphere under controlled reaction conditions and its application in low-cost solar cells. Mater Sci Semicond Process 16(6):1485–1494. doi: 10.1016/j.mssp.2013.04.026 CrossRefGoogle Scholar
  9. 9.
    Li DS, Zou Y, Yang DR (2012) Controlled synthesis of luminescent CuInS2 nanocrystals and their optical properties. J Lumin 132(2):313–317. doi: 10.1016/j.jlumin.2011.08.030 CrossRefGoogle Scholar
  10. 10.
    Scheer R, Klenk R, Klaer J, Luck I (2004) CuInS2 based thin film photovoltaics. Sol Energy 77(6):777–784. doi: 10.1016/j.solener.2004.08.004 CrossRefGoogle Scholar
  11. 11.
    Long F, Wang WM, Tao HC, Jia TK, Li XM, Zou ZG, Fu ZY (2010) Solvothermal synthesis, nanocrystal print and photoelectrochemical properties of CuInS2 thin film. Mater Lett 64(2):195–198. doi: 10.1016/j.matlet.2009.10.044 CrossRefGoogle Scholar
  12. 12.
    Han SK, Kong MG, Guo Y, Wang MT (2009) Synthesis of copper indium sulfide nanoparticles by solvothermal method. Mater Lett 63(13–14):1192–1194. doi: 10.1016/j.matlet.2009.02.032 CrossRefGoogle Scholar
  13. 13.
    Lee DY, Kim J (2010) Characterization of sprayed CuInS2 films by XRD and Raman spectroscopy measurements. Thin Solid Films 518(22):6537–6541. doi: 10.1016/j.tsf.2010.03.062 CrossRefGoogle Scholar
  14. 14.
    Zhang JJ, Li Q, Chen J (2014) Synthesis and characterization of chalcopyrite CuInS2 nanorods by an organic molten salt method. Mater Lett 120:182–184. doi: 10.1016/j.matlet.2014.01.079 CrossRefGoogle Scholar
  15. 15.
    Hu HM, Yang BJ, Liu XY, Zhang R, Qian YT (2004) Large-scale growth of porous CuInS2 microspheres. Inorg Chem Commun 7(4):563–565. doi: 10.1016/j.inoche.2004.02.019 CrossRefGoogle Scholar
  16. 16.
    Jiang Y, Qu Y, Yuan SW, Xie B, Zhang SY, Qian YT (2001) Preparation and characterization of CuInS2 nanorods and nanotubes from an elemental solvothermal reaction. J Mater Res 16(10):2805–2809. doi: 10.1557/Jmr.2001.0386 CrossRefGoogle Scholar
  17. 17.
    Shen GZCD, Tang KB, Fang Z, Sheng J, Qian YT (2003) Polyol-mediated synthesis of porous nanocrystalline CuInS2 foam. J Cryst Growth 254:75CrossRefGoogle Scholar
  18. 18.
    Shi L, Yin PQ, Wang LB, Qian YT (2012) Fabrication of single-crystalline CuInS2 nanowires array via a diethylenetriamine-thermal route. CrystEngComm 14(21):7217–7221. doi: 10.1039/C2ce25368b CrossRefGoogle Scholar
  19. 19.
    Baláž P (2008) Mechanochemistry in nanoscience and minerals engineering. Springer, HeidelbergGoogle Scholar
  20. 20.
    Baláž P, Achimovičová M, Baláž M, Billik P, Cherkezova-Zheleva Z, Criado JM, Delogu F, Dutková E, Gaffet E, Gotor FJ, Kumar R, Mitov I, Rojac T, Senna M, Streletskii A, Wieczorek-Ciurowa K (2013) Hallmarks of mechanochemistry: from nanoparticles to technology. Chem Soc Rev 42(18):7571–7637. doi: 10.1039/C3cs35468g CrossRefGoogle Scholar
  21. 21.
    Gorai S, Bhattacharya S, Liarokapis E, Lampakis D, Chaudhuri S (2005) Morphology controlled solvothermal synthesis of copper indium sulphide powder and its characterization. Mater Lett 59(28):3535–3538. doi: 10.1016/j.matlet.2005.06.023 CrossRefGoogle Scholar
  22. 22.
    Nadica D, Abazovič DJJ, Stoiljkovič Milovan M, Mitrič Miodrag N, Ahrenkiel Scott P, Nedeljkovič Jovan M, Čomor Mirjana I (2012) Colloidal chemistry-based synthesis of quantized CuInS2/Se2 nanoparticles. J Serb Chem Soc 77(6):789–797CrossRefGoogle Scholar
  23. 23.
    He JJ, Zhou WH, Li M, Hou ZL, Du YF, Wu SX (2012) One-pot route for preparation of monodisperse CuInS2 nanocrystals. Mater Lett 66(1):96–98. doi: 10.1016/j.matlet.2011.08.013 CrossRefGoogle Scholar
  24. 24.
    Katsuhiro Nose NF, Omata Takahisa, Otsuka-Yao-Matsuo Shinya, Wataru Kato MU, Nakamura Hiroyuki, Maeda Hideaki, Hayato Kamioka AHH (2009) Photoluminescence of CuInS2-based semiconductor quantum dots; Its origin and the effect of ZnS coating. J Phys 165:012028Google Scholar
  25. 25.
    Landsberg PT (1991) Recombination in semiconductors. Cambridge University Press, CambridgeGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Erika Dutková
    • 1
  • María J. Sayagués
    • 2
  • Jaroslav Briančin
    • 1
  • Anna Zorkovská
    • 1
  • Zdenka Bujňáková
    • 1
  • Jaroslav Kováč
    • 3
  • Jaroslav KováčJr.
    • 3
  • Peter Baláž
    • 1
  • Jana Ficeriová
    • 1
  1. 1.Institute of GeotechnicsSlovak Academy of SciencesKosiceSlovakia
  2. 2.Institute of Material Science of Seville (CSIC-US)SevilleSpain
  3. 3.Institute of Electronics and PhotonicsSlovak University of Technology and International Laser CentreBratislavaSlovakia

Personalised recommendations