Skip to main content

Advertisement

Log in

Enhanced energy-storage properties of BaZrO3-modified 0.80Bi0.5Na0.5TiO3–0.20Bi0.5K0.5TiO3 lead-free ferroelectric ceramics

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Large energy-storage density is observed in BaZrO3 (BZ)-modified 0.80Bi0.5Na0.5TiO3-0.20Bi0.5K0.5TiO3 (BNBK) lead-free ferroelectric (FE) ceramics synthesized by conventional solid-state reaction. The energy-storage property of (1 − x)BNBK–xBZ has been investigated. Certain content of BZ can enhance the energy-storage property of BNBK by enhancing the breakdown strength. The largest energy-storage density W 1 = 0.73 J/cm3 and efficiency of energy storage η = 0.75 at E = 70 kV/cm are achieved in the 0.96BNBK–0.04BZ, which is significantly higher than that of BNT-based and lead-containing FE materials reported. Its energy-storage density exhibits the superior thermal stability with temperature range of 30–100 °C. Those properties promise that the environmental friendly (1 − x)BNBK–xBZ ceramics are candidate for applications of energy-storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bowen CR, Kim HA, Weaver PM, Dunn S (2014) Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ Sci 7(1):25. doi:10.1039/c3ee42454e

    Article  Google Scholar 

  2. Rödel J, Jo W, Seifert KTP, Anton E-M, Granzow T, Damjanovic D (2009) Perspective on the development of lead-free piezoceramics. J Am Ceram Soc 92(6):1153–1177. doi:10.1111/j.1551-2916.2009.03061.x

    Article  Google Scholar 

  3. Ghosh A, Damjanovic D (2011) Antiferroelectric–ferroelectric phase boundary enhances polarization extension in rhombohedral Pb(Zr, Ti)O3. Appl Phys Lett 99(23):232906. doi:10.1063/1.3666233

    Article  Google Scholar 

  4. Zhang N, Feng Y, Xu Z (2011) Effects of lanthanum modification on electrical and dielectric properties of Pb(Zr0.70, Ti0.30)O3 ceramics. Mater Lett 65(11):1611–1614. doi:10.1016/j.matlet.2011.02.087

    Article  Google Scholar 

  5. Zhang S-T, Kounga AB, Aulbach E, Ehrenberg H, Rödel J (2007) Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 system. Appl Phys Lett 91(11):112906. doi:10.1063/1.2783200

    Article  Google Scholar 

  6. Jo W, Granzow T, Aulbach E, Rödel J, Damjanovic D (2009) Origin of the large strain response in (K0.5Na0.5)NbO3-modified (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoceramics. J Appl Phys 105(9):094102. doi:10.1063/1.3121203

    Article  Google Scholar 

  7. Cao WP, Li WL, Xu D, Hou YF, Wang W, Fei WD (2014) Enhanced electrocaloric effect in lead-free NBT-based ceramics. Ceram Int 40(7):9273–9278. doi:10.1016/j.ceramint.2014.01.149

    Article  Google Scholar 

  8. Bai Y, Zheng G-P, Shi S-Q (2011) Abnormal electrocaloric effect of Na0.5Bi0.5TiO3–BaTiO3 lead-free ferroelectric ceramics above room temperature. Mater Res Bull 46(11):1866–1869. doi:10.1016/j.materresbull.2011.07.038

    Article  Google Scholar 

  9. Shi J, Fan H, Liu X, Li Q (2014) Giant strain response and structure evolution in (Bi0.5Na0.5)0.945 − x(Bi0.2Sr0.7□0.1)xBa0.055TiO3 ceramics. J Eur Ceram Soc 34(15):3675–3683. doi:10.1016/j.jeurceramsoc.2014.05.032

    Article  Google Scholar 

  10. Wang XX, Chan HLW, Choy CL (2003) (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics with simultaneous addition of CeO2 and La2O3. Appl Phys A 80(2):333–336. doi:10.1007/s00339-003-2210-9

    Article  Google Scholar 

  11. Jo W, Daniels J, Damjanovic D, Kleemann W, Rödel J (2013) Two-stage processes of electrically induced-ferroelectric to relaxor transition in 0.94(Bi1/2Na1/2)TiO3–0.06BaTiO3. Appl Phys Lett 102(19):192903. doi:10.1063/1.4805360

    Article  Google Scholar 

  12. Xu C, Lin D, Kwok KW (2008) Structure, electrical properties and depolarization temperature of (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoelectric ceramics. Solid State Sci 10(7):934–940. doi:10.1016/j.solidstatesciences.2007.11.003

    Article  Google Scholar 

  13. Wang B, Luo L, Jiang X, Li W, Chen H (2014) Energy-storage properties of (1 − x)Bi0.47Na0.47Ba0.06TiO3xKNbO3 lead-free ceramics. J Alloys Compd. doi:10.1016/j.jallcom.2013.09.052

    Google Scholar 

  14. Chandrasekhar M, Kumar P (2015) Synthesis and characterizations of BNT–BT and BNT–BT–KNN ceramics for actuator and energy storage applications. Ceram Int 41(4):5574–5580. doi:10.1016/j.ceramint.2014.12.136

    Article  Google Scholar 

  15. Hao J, Xu Z, Chu R, Li W, Juan D, Peng F (2015) Enhanced energy-storage properties of (1 − x)[(1 − y)(Bi0.5Na0.5)TiO3y(Bi0.5K0.5)TiO3]–x(K0.5Na0.5)NbO3 lead-free ceramics. Solid State Commun 204:19–22. doi:10.1016/j.ssc.2014.12.004

    Article  Google Scholar 

  16. Xu Q, Li T, Hao H, Zhang S, Wang Z, Cao M, Yao Z, Liu H (2015) Enhanced energy storage properties of NaNbO3 modified Bi0.5Na0.5TiO3 based ceramics. J Eur Ceram Soc 35(2):545–553. doi:10.1016/j.jeurceramsoc.2014.09.003

    Article  Google Scholar 

  17. Xu Z, Hao X, An S (2015) Dielectric properties and energy-storage performance of (Na0.5Bi0.5)TiO3–SrTiO3 thick films derived from polyvinylpyrrolidone-modified chemical solution. J Alloys Compd 639:387–392. doi:10.1016/j.jallcom.2015.03.133

    Article  Google Scholar 

  18. Fan G, Lu W, Wang X, Liang F (2007) Morphotropic phase boundary and piezoelectric properties of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3–KNbO3 lead-free piezoelectric ceramics. Appl Phys Lett 91(20):202908. doi:10.1063/1.2815918

    Article  Google Scholar 

  19. Seifert KTP, Jo W, Rödel J (2010) Temperature-insensitive large strain of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3–(K0.5Na0.5)NbO3 lead-free piezoceramics. J Am Ceram Soc. doi:10.1111/j.1551-2916.2009.03573.x

    Google Scholar 

  20. Dittmer R, Jo W, Daniels J, Schaab S, Rödel J, Johnson DW (2011) Relaxor characteristics of morphotropic phase boundary (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3 modified with Bi(Zn1/2Ti1/2)O3. J Am Ceram Soc 94(12):4283–4290. doi:10.1111/j.1551-2916.2011.04631.x

    Article  Google Scholar 

  21. Babu GA, Raja RS, Bhaumik I, Ganesamoorthy S, Ramasamy P, Gupta PK (2014) Growth and characterization of undoped and Mn doped lead-free piezoelectric NBT–KBT single crystals. Mater Res Bull 53:136–140. doi:10.1016/j.materresbull.2014.02.017

    Article  Google Scholar 

  22. Kainz T, Naderer M, Schütz D, Fruhwirth O, Mautner FA, Reichmann K (2014) Solid state synthesis and sintering of solid solutions of BNT–xBKT. J Eur Ceram Soc 34(15):3685–3697. doi:10.1016/j.jeurceramsoc.2014.04.040

    Article  Google Scholar 

  23. Puli VS, Pradhan DK, Riggs BC, Chrisey DB, Katiyar SR (2014) Structure, ferroelectric, dielectric and energy storage studies of Ba0.70Ca0.30TiO3, Ba(Zr0.20Ti0.80)O3 ceramic capacitors. Integr Ferroelectr 157:139–146. doi:10.1080/10584587.2014.912939

    Article  Google Scholar 

  24. Wang Z, Caon M, Yao Z, Song Z, Li G, Wei H, Hao H, Liu H (2014) Dielectric relaxation behavior and energy storage properties in SrTiO3 ceramics with trace amounts of ZrO2 additives. Ceram Int 40:14127–14132

    Article  Google Scholar 

  25. Rachakom A, Jiansirisomboon S, Watcharapasorn A (2014) Effect of poling on piezoelectric and ferroelectric properties of Bi0.5Na0.5Ti1−x Zr x O3 ceramics. J Electroceram 33:105–110

    Article  Google Scholar 

  26. Rahman JU, Hussain A, Maqbool A, Ryu GH, Song TK, Kim W-J, Kim MH (2014) Field induced strain response of lead-free BaZrO3-modified Bi0.5Na0.5TiO3–BaTiO3 ceramics. J Alloys Compd 593:97–102. doi:10.1016/j.jallcom.2014.01.031

    Article  Google Scholar 

  27. Gu M, Luo H, Liu Y, Withers RL (2011) Composition-induced antiferroelectric phase and giant strain in lead-free (1 − x)Na0.5Bi0.5TiO3xBaTiO3 ceramics. Phys Rev B 83(5):054118

    Article  Google Scholar 

  28. Jo W, Schaab S, Sapper E, Schmitt LA, Kleebe H-J, Bell AJ, Jr Rödel (2011) On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3–6 mol% BaTiO3. J Appl Phys 110(7):074106. doi:10.1063/1.3645054

    Article  Google Scholar 

  29. Viola G, Ning H, Reece MJ, Wilson R, Correia TM, Weaver P, Cain MG, Yan H (2012) Reversibility in electric field-induced transitions and energy storage properties of bismuth-based perovskite ceramics. J Phys D Appl Phys 45(35):355302. doi:10.1088/0022-3727/45/35/355302

    Article  Google Scholar 

  30. Zhao Y, Hao X, Li M (2014) Dielectric properties and energy-storage performance of (Na0.5Bi0.5)TiO3 thick films. J Alloys Compd 601:112–115. doi:10.1016/j.jallcom.2014.02.137

    Article  Google Scholar 

  31. Zhang Q, Wang L, Luo J, Tang Q, Du J (2009) Improved energy storage density in barium strontium titanate by addition of BaO–SiO2–B2O3 glass. J Am Ceram Soc 92(8):1871–1873. doi:10.1111/j.1551-2916.2009.03109

    Article  Google Scholar 

  32. Gao F, Dong X, Mao C, Liu W, Zhang H, Yang L, Cao F, Wang G, Jones J (2011) Energy-storage properties of 0.89Bi0.5Na0.5TiO3–0.06BaTiO3–0.05K0.5Na0.5NbO3 lead-free anti-ferroelectric ceramics. J Am Ceram Soc 94(12):4382–4386. doi:10.1111/j.1551-2916.2011.04731

    Article  Google Scholar 

  33. Chen X, Zhang H, Cao F, Wang G, Dong X, Gu Y, He H, Liu Y (2009) Charge-discharge properties of lead zirconate stannate titanate ceramics. J Appl Phys 106(3):034105. doi:10.1063/1.3187778

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Nature Science Foundation (51172187), the SPDRF (20116102130002, 20116102120016), the 111 Program (B08040) of MOE, the Xi’an Science and Technology Foundation (XBCL-1-08), the SKLP Foundation (KP201421), the Project of Key Areas of Innovation team in Shaanxi Province (2014KCT-12), the Fundamental Research Funds for the Central Universities (3102014JGL01002, 3102014JGY01004), and the Aeronautical Science Foundation of China (2013ZF53072).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Wang, J., Liu, Z. et al. Enhanced energy-storage properties of BaZrO3-modified 0.80Bi0.5Na0.5TiO3–0.20Bi0.5K0.5TiO3 lead-free ferroelectric ceramics. J Mater Sci 51, 1153–1160 (2016). https://doi.org/10.1007/s10853-015-9446-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9446-6

Keywords

Navigation