Skip to main content
Log in

Synthesis and physicochemical characterization of organomodified halloysite/epoxidized natural rubber nanocomposites: a potential flame-resistant adhesive

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The physicochemical properties of organomodified halloysite nanotubes (OHNT)/epoxidized natural rubber with 50 % epoxidation level (ENR-50) were subjected for evaluation in this study. Several OHNT/ENR-50 nanocomposites with different weight ratios of OHNT to ENR-50 were prepared via solvent casting technique. The influence of OHNT on the physicochemical profile of the nanocomposites was elucidated via thermal, morphological, and nanoindentation characterizations. Both XRD and FTIR analyses suggested that the ENR-50 was mainly absorbed onto the surface of HNT via hydrogen bonding. SEM analyses revealed complete homogenous dispersion of OHNTs in the presence of ENR-50. The thermal decomposition profiles of the nanocomposites indicated an improvement in the maximum decomposition temperature (T max) upon increasing the OHNT content. The mechanical aspect of the nanocomposites showed that the hardness (H) and reduce modulus (E r) of ENR-50 were also increased with incorporation of OHNT. Limited oxygen index test reveals that the prepared OHNT/ENR-50 nanocomposites are classified as self-extinguish materials. The OHNT/ENR-50 nanocomposites hold potential application in flame-resistant coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Utracki LA (2004) Clay-containing polymeric nanocomposites. Rapra Technology, Montreal

    Google Scholar 

  2. Mittal V, Kim JK, Pal K (2011) Recent Advances in Elastomeric Nanocomposites. Springer-Verlag, Berlin

    Book  Google Scholar 

  3. Lin M, Jia Z, Jia D, Zhou C (2014) Recent advance in research on halloysite nanotubes-polymer nanocomposites. Prog Polym Sci 39:1498

    Article  Google Scholar 

  4. Ghanbari M, Emadzadeh D, Lau WJ, Lai SO, Matsuura T, Ismail AF (2015) Synthesis and characterization of novel thin film nanocomposite (TFN) membranes embedded with halloysite nanotubes (HNTs) for water desalination. Desalinantion 358:33

    Article  Google Scholar 

  5. Schmitt H, Creton N, Prahantha K, Soulestin J, Lacrampe MF, Krawczak P (2015) Melt-blended halloysite nanotubes/wheat starch nanocomposites as drug delivery systems. Prog Eng Sci 55:573

    Google Scholar 

  6. Baker CSL (2001) Chapter 3: Modified natural rubber. In: Bhowmick AK, Stephens HL (eds) Handbook of elastomers, 2nd edn. Marcel Dekker Inc., New York, pp 61–108

    Google Scholar 

  7. Khan I, Poh BT (2011) Effect of molecular weight and testing rate on adhesion property of pressure-sensitive adhesives prepared from epoxidized natural rubber. Mater Design 32:2513

    Article  Google Scholar 

  8. Poh BT, Teh YY (2014) Adhesion properties of epoxidized natural rubber (ENR 25)/ethylene-propylene-diene rubber (EPDM) blend adhesive: effect of blend ratio and testing rate. J Vinyl Additives Technol. doi:10.1002/vnl.21418 (open access)

    Google Scholar 

  9. Poh BT, Lee PG, Chuah SC (2008) Adhesion property of epoxidized natural rubber (ENR)-based adhesives containing calcium carbonate. Express Polym Lett 2:398

  10. Poh BT, Teh YY (2014) The effect of blend ratio and testing rate on adhesion properties of epoxidized natural rubber (ENR-50)/acrylonitrile-butadiene rubber (NBR) blend adhesive. J Adhes 90:802

  11. Kumar RN, Kong WC, Abu Bakar A (1999) UV radiation curing of surface coatings based on ENR-cycloaliphatic diepoxide-glycidyl methacrylate system by cationic photoinitiators-optimization of process variables through response surface methodology. J Coatings Technol 71:79

    Article  Google Scholar 

  12. Karthini K, Abd. Aziz MA, Nur Athirah MB (2014) Development of glass coating using liquid epoxidized natural rubber. Int J Eng Appl Sci 5:12

    Google Scholar 

  13. Ismail H, Salleh SZ, Ahmad Z (2013) Properties of halloysite nanotube filled SMR L and ENR50 Nanocomposites. Int J Polym Mater Biopolym Mater 62:314

    Article  Google Scholar 

  14. Ismail H, Salleh SZ, Ahmad Z (2013) Fatigue and hysteresis behavior of halloysite nanotubes-filled natural rubber (SMR L and ENR 50) nanocomposites. J Appl Polym Sci 127:3047

    Article  Google Scholar 

  15. Li L, Wu Z, Jiang S, Zhang S, Lu S, Chen W, Sun B, Zhu M (2015) Effect of halloysite nanotubes on thermal and flame retardant properties of polyamide 6/melamine cyanurate composites. Polym Comp 36:892

    Article  Google Scholar 

  16. Jia Z, Luo Y, Guo B, Yang B, Du M, Jia D (2009) Reinforcing and flame-retardant effects of halloysite nanotubes on LLDPE. Polym Plastics Technol Eng 48:607

    Article  Google Scholar 

  17. Du M, Guo B, Jia D (2010) Newly emerging applications of halloysite nanotubes: a review. Polym Int 59:574

    Google Scholar 

  18. Hao A, Wong I, Wu H, Lisco B, Ong B, Sallean A, Butler S, Londa M, Koo JH (2015) Mechanical, thermal, and flame-retardant performance of polyamide 11-halloysite nanotube nanocomposites. J Mater Sci 50:157. doi:10.1007/s10853-014-8575-7

    Article  Google Scholar 

  19. Zhao J, Deng C-L, Du S-L, Chen L, Deng C, Wang Y-Z (2014) Synergistic flame-retardant effect of halloysite nanotubes on intumescent flame retardant in LDPE. J Appl Polym Sci 131:40065

    Google Scholar 

  20. Salehabadi A, Abu Bakar M (2013) Epoxidized natural rubber-organomodified montmorillonite nanohybrids; interaction and thermal decomposition. Mater Sci Forum 756:119

    Article  Google Scholar 

  21. Oliver WC, Pharr GM (1982) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564

    Article  Google Scholar 

  22. Dhakal HN, Zhang ZY, Richardson MOW (2006) Nanoindentation behaviour of layered silicate reinforced unsaturated polyester nanocomposites. Polym Test 25:846

    Article  Google Scholar 

  23. Shen L, Phang IY, Liu T, Zeng K (2004) Nanoindentation and morphological studies on nylon 66/organoclay nanocomposites. II. Effect of strain rate. Polymer (Guildf) 45:8221

    Article  Google Scholar 

  24. Rooj S, Das A, Thakur V, Mahaling RN, Bhowmick AK, Heinrich G (2010) Preparation and properties of natural rubber and naturally occurring halloysite nanotubes. Mater Design 31:2151

    Article  Google Scholar 

  25. Wang T, Zhu J, Zhu R, Ge F, Yuan P, He H (2010) Enhancing the sorption capacity of CTMA-bentonite by simultaneous intercalation of cationic polyacrylamide. J Hazardous Mater 178:1078

    Article  Google Scholar 

  26. Puig M, Cabedo L, Gracenea JJ, Jiménez-Morales A, Gámez-Pérez J, Suay JJ (2014) Adhesion enhancement of powder coatings on galvanised steel by addition of organo-modified silica particles. Prog Org Coatings 77:1309

    Article  Google Scholar 

  27. Jaiboon V, Yoosuk B, Prasassarakich P (2014) Amine modified silica xerogel for H2S removal at low temperature. Fuel Processing Technol 128:276

    Article  Google Scholar 

  28. Sun P, Liu G, Lv D, Dong X, Wu J, Wang D (2015) Effective activation of halloysite nanotubes by piranha solution for amine modification via silane coupling chemistry. RSC Adv 5:52916

    Article  Google Scholar 

  29. Noshay A, McGrath JE (1977) Block copolymers: Overview and critical survey. Academic Press INC, New York, pp 392–410

    Google Scholar 

  30. Bugaev KO, Zelenina AA, Volodin VA (2012) Vibrational spectroscopy of chemical species in silicon and silicon-rich nitride thin films. Int J Spectroscopy. doi:10.1155/2012/281851 (open access)

    Google Scholar 

  31. Pasbakhsh P, Ismail H, Ahmad Fauzi MN, Abu Bakar A (2009) Influence of maleic anhydride grafted ethylene propylene diene monomer (MAH-g-EPDM) on the properties of EPDM nanocomposites reinforced by halloysite nanotubes. Polym Test 28:548

    Article  Google Scholar 

  32. Tan WL, Abu Bakar M (2013) Synthesis, characterization and impedance spectroscopy study of magnetite/epoxidized natural rubber nanocomposites. J Alloys Compd 561:40

    Article  Google Scholar 

  33. Tan WL, Abu Bakar M, Abu Bakar NHH (2013) Effect of anion of lithium salt on the property of lithium salt-epoxidized natural rubber polymer electrolytes. Ionics 19:601

    Article  Google Scholar 

  34. Salehabadi A, Abu Bakar M, Abu Bakar NHH (2014) Effect of organo-modified nanoclay on the thermal and bulk structural properties of poly(3-hydroxybutyrate)-epoxidized natural rubber blends: formation of multi-components biobased nanohybrids. Materials (Basel) 7:4508

    Article  Google Scholar 

  35. Joseph J, Jemmis ED (2007) Red-, blue-, or no-shift in hydrogen bonds: a unified explanation. J Am Chem Soc 129:4620

    Article  Google Scholar 

  36. Tan WL, Abu Bakar M, Abu Bakar NHH (2014) Thermal and kinetic studies of epoxidized natural rubber in lithium salts-epoxidized natural rubber polymer electrolytes. J Therm Anal Calorim 117:1111

    Article  Google Scholar 

  37. Hedicke-Höchstötter K, Lim GT, Altstädt V (2009) Novel polyamide nanocomposites based on silicate nanotubes of the mineral halloysite. Compos Sci Technol 69:330

    Article  Google Scholar 

  38. Liu Q, Zhang Y, Xu H (2008) Properties of vulcanized rubber nanocomposites filled with nanokaolin and precipitated silica. Appl Clay Sci 42:232

    Article  Google Scholar 

  39. Peng Z, Kong LX, Li SD, Chen Y, Huang MF (2007) Self-assembled natural rubber/silica nanocomposites: its preparation and characterization. Compos Sci Technol 67:3130

    Article  Google Scholar 

  40. Van Krevelen DW, Hoftyzer PJ (1976) Properties of polymers, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  41. Wang Q (2013) Polymer nanocomposite: a promising flame retardant. J Mater Sci Nanotechnol 1:e202

    Google Scholar 

  42. Wang N, Mi L, Wu Y, Wang X, Fang Q (2013) Enhanced flame retardancy of natural rubber composites with addition of microencapsulated ammonium polyphosphate and MCM-41 fillers. Fire safety J 62:281

    Article  Google Scholar 

  43. Wang N, Mi L, Wu Y, Wang X, Fang Q (2014) Double layered co-microencapsulated ammonium polyphosphate and mesoporous MCM-41 in intumescent flame-retardant natural rubber composites. J Therm Anal Calorim 115:1173

    Article  Google Scholar 

  44. Wang N, Mi L, Wu Y, Wang X, Fang Q (2014) The influence of silicone shell on double-layered microcapsules in intumescent flame- retardant natural rubber composites. J Therm Anal Calorim 118:349

    Article  Google Scholar 

  45. Wang J, Yang K, Zheng X (2009) Study on the effect of 4A zeolite on the properties of intumescent flame-retardant agent filled natural rubber composites. J Polym Res 16:427

    Article  Google Scholar 

  46. Menon ARR (1997) Flame-retardant characteristics of natural rubber modified with a bromo derivative of phosphorylated cashew nut shell liquid. J Fire Sci 15:3

    Article  Google Scholar 

  47. Ismawi DHA, Happer JF, Ansarifar A (2008) Influence of flame retardant additives on the flammability behavior of natural rubber (NR). J Rubb Res 11:223

    Google Scholar 

  48. Ismawi DHA, Nik Ismail NI, Abdul Razak SB (2013) Morphology, physical and flame-retardant properties of epoxidized natural rubber. J Rubb Res 16:91

    Google Scholar 

  49. Lecouvet B, Horion J, D’Haese C, Bailly C, Nysten B (2013) Elastic modulus of halloysite nanotubes. Nanotechnology 24:105704

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Ministry of Higher Education for financial support in the form of the FRGS Grant: 203/PKIMIA/6711420.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. L. Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, W.L., Salehabadi, A., Mohd Isa, M.H. et al. Synthesis and physicochemical characterization of organomodified halloysite/epoxidized natural rubber nanocomposites: a potential flame-resistant adhesive. J Mater Sci 51, 1121–1132 (2016). https://doi.org/10.1007/s10853-015-9443-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9443-9

Keywords

Navigation