Skip to main content

Advertisement

Log in

Surface modifications to boost sensitivities of electrochemical biosensors using gold nanoparticles/silicon nanowires and response surface methodology approach

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This work describes fabrication of a DNA electrochemical sensor utilized of gold nanoparticles/silicon nanowires/indium tin oxide (AuNPs/SiNWs/ITO) as a modified substrate for detection of dengue virus DNA oligomers using methylene blue (MB) as a redox indicator. The response surface methodology (RSM) was applied as one of the advanced optimization methods for fabrication of SiNWs/AuNPs/ITO electrode and immobilization of DNA probes to enhance the sensitivity of DNA detection. Several factors were successfully optimized using RSM, including volume of SiNWs, concentration of dithiopropionic acid (DTPA), volume of AuNPs, DNA probe concentration, and DNA probe immobilization time. RSM approach shows that AuNPs and DNA probe concentration were the prominent factors affecting on the MB current signal and immobilization of DNA probe on AuNPs/SiNWs surface. This new developed sensor was able to discriminate complementary target sequences, noncomplementary and single-base mismatch sequences, for DNA dengue virus detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cui H-F, Cheng L, Zhang J, Liu R, Zhang C, Fan H (2014) An electrochemical DNA sensor for sequence-specific DNA recognization in a homogeneous solution. Biosens Bioelectron 56:124–128

    Article  Google Scholar 

  2. Li F, Chen W, Zhang S (2008) Development of DNA electrochemical biosensor based on covalent immobilization of probe DNA by direct coupling of sol–gel and self-assembly technologies. Biosens Bioelectron 24(4):781–786

    Article  Google Scholar 

  3. Zhang C, Xu S, Zhang X, Huang D, Li R, Zhao S, Wang B (2014) Electrochemical detection of specific DNA sequences related to bladder cancer on CdTe quantum dots modified glassy carbon electrode. J Electroanal Chem 735:115–122

    Article  Google Scholar 

  4. Sassolas A, Leca-Bouvier BD, Blum LJ (2008) DNA biosensors and microarrays. Chem Rev 108(1):109–139

    Article  Google Scholar 

  5. Chowdhury AD, Gangopadhyay R, De A (2014) Highly sensitive electrochemical biosensor for glucose, DNA and protein using gold-polyaniline nanocomposites as a common matrix. Sens Actuators B Chem 190:348–356

    Article  Google Scholar 

  6. Rashid JIA, Yusof NA, Abdullah J, Hashim U, Hajian R (2014) The utilization of SiNW/AuNP-modified indium tin oxide (ITO) in fabrication of electrochemical DNA sensor. Mater Sci Eng C 45:270–276

    Article  Google Scholar 

  7. Rashid J, Yusof N, Abdullah J, Hashim U, Hajian R (2015) A novel disposable biosensor based on SiNWs/AuNPs modified-screen printed electrode for dengue virus DNA oligomer detection. IEEE Sens J. doi:10.1109/JSEN.2015.2417911

    Google Scholar 

  8. Farjami E, Clima L, Gothelf K, Ferapontova EE (2010) DNA interactions with a methylene blue redox indicator depend on the DNA length and are sequence specific. Analyst 135:1443–1448. doi:10.1039/c0an00049c

    Article  Google Scholar 

  9. Velusamy V, Arshak K, Yang CF, Yu L, Korostynska O, Adley C (2011) Comparison between DNA immobilization techniques on a redox polymer matrix. Am J Anal Chem 2:392–400. doi:10.4236/ajac.2011.23048

    Article  Google Scholar 

  10. Qi X, Gao H, Zhang Y, Wang X, Chen Y, Sun W (2012) Electrochemical DNA biosensor with chitosan-Co3O4 nanorod-graphene composite for the sensitive detection of Staphylococcus aureus nuc gene sequence. Bioelectrochemistry 88:42–47. doi:10.1016/j.bioelechem.2012.05.007

    Article  Google Scholar 

  11. Primo EN, Belén Oviedo M, Sánchez CG, Rubianes MD, Rivas GA (2014) Bioelectrochemical sensing of promethazine with bamboo-type multiwalled carbon nanotubes dispersed in calf-thymus double stranded DNA. Bioelectrochemistry. doi:10.1016/j.bioelechem.2014.05.002

    Google Scholar 

  12. Shi A, Wang J, Han X, Fang X, Zhang Y (2014) A sensitive electrochemical DNA biosensor based on gold nanomaterial and graphene amplified signal. Sens Actuators B Chem 200:206–212. doi:10.1016/j.snb.2014.04.024

    Article  Google Scholar 

  13. Yang L, Lin H, Zhang Z, Cheng L, Ye S, Shao M (2013) Gas sensing of tellurium-modified silicon nanowires to ammonia and propylamine. Sens Actuators B Chem 177:260–264

    Article  Google Scholar 

  14. Oh JY, Jang H-J, Cho W-J, Islam MS (2012) Highly sensitive electrolyte-insulator-semiconductor pH sensors enabled by silicon nanowires with Al2O3SiO2 sensing membrane. Sens Actuators B Chem 171:238–243

    Article  Google Scholar 

  15. Rashid JIA, Abdullah J, Yusof NA, Hajian R (2013) The development of silicon nanowire as sensing material and its applications. J Nanomater 2013:1–16. doi:10.1155/2013/328093

    Google Scholar 

  16. Yan Q, Wang Z, Zhang J, Peng H, Chen X, Hou H, Liu C (2012) Nickel hydroxide modified silicon nanowires electrode for hydrogen peroxide sensor applications. Electrochim Acta 61:148–153. doi:10.1016/j.electacta.2011.11.098

    Article  Google Scholar 

  17. Su S, He Y, Zhang M, Yang K, Song S, Zhang X, Fan C, Lee S-T (2008) High-sensitivity pesticide detection via silicon nanowires-supported acetylcholinesterase-based electrochemical sensors. Appl Phys Lett 93(2):023113. doi:10.1063/1.2959827

    Article  Google Scholar 

  18. Kwon DH, An HH, Kim H-S, Lee JH, Suh SH, Kim YH, Yoon CS (2011) Electrochemical albumin sensing based on silicon nanowires modified by gold nanoparticles. Appl Surf Sci 257(10):4650–4654. doi:10.1016/j.apsusc.2010.12.109

    Article  Google Scholar 

  19. Chen W, Yao H, Tzang CH, Zhu J, Yang M, Lee S-T (2006) Silicon nanowires for high-sensitivity glucose detection. Appl Phys Lett 88(21):213104. doi:10.1063/1.2206102

    Article  Google Scholar 

  20. Su S, Wei X, Guo Y, Zhong Y, Su Y, Huang Q, Fan C, He Y (2013) A Silicon nanowire-based electrochemical sensor with high sensitivity and electrocatalytic activity. Part Part Syst Charact 30(4):326–331. doi:10.1002/ppsc.201200076

    Article  Google Scholar 

  21. Tao B, Zhang J, Hui S, Wan L (2009) An amperometric ethanol sensor based on a Pd–Ni/SiNWs electrode. Sens Actuators B Chem 142(1):298–303. doi:10.1016/j.snb.2009.08.004

    Article  Google Scholar 

  22. Yang K, Wang H, Zou K, Zhang X (2006) Gold nanoparticle modified silicon nanowires as biosensors. Nanotechnology 17(11):S276–S279. doi:10.1088/0957-4484/17/11/s08

    Article  Google Scholar 

  23. Myers RH, Anderson-Cook CM (2009) Response surface methodology: process and product optimization using designed experiments, vol 705. Wiley, New York

    Google Scholar 

  24. Rashid A, Izuan J, Samat N, Wan Yusoff WM (2011) Optimization of temperature, moisture content and inoculum size in solid state fermentation to enhance mannanase production by Aspergillus terreus SUK-1 using RSM. Pak J Biol Sci 14(9):533–539

    Article  Google Scholar 

  25. Rashid JIA, Samat N, Yusoff WMW (2012) Screening and optimization of medium composition for mannanase production by Aspergillus terreus SUK-1 in solid state fermentation using statistical experimental methods. Res J Microbiol 7(5):242

    Article  Google Scholar 

  26. Alizadeh T, Zare M (2009) Enhancement of sensitivity of molecularly imprinted polymer based parathion voltammetric sensor by using experimental design technique. Anal Bioanal Electrochem 2009(3):169–187

    Google Scholar 

  27. Uliana CV, Riccardi CS, Tognolli JO, Yamanaka H (2008) Optimization of an amperometric biosensor for the detection of hepatitis C virus using fractional factorial designs. J Braz Chem Soc 19(4):782–787

    Article  Google Scholar 

  28. Mirmoghtadaie L, Ensafi AA, Kadivar M, Norouzi P (2013) Highly selective electrochemical biosensor for the determination of folic acid based on DNA modified-pencil graphite electrode using response surface methodology. Mater Sci Eng C 33(3):1753–1758

    Article  Google Scholar 

  29. Urkut Z, Kara P, Goksungur Y, Ozsoz M (2011) Response surface methodology for optimization of food borne pathogen detection in real samples based on label free electrochemical nucleic acid biosensors. Electroanalysis 23(11):2668–2676. doi:10.1002/elan.201100310

    Article  Google Scholar 

  30. Nasir SH, Hadi N (2008) Gold nanoparticles embedded on the surface of polyvinyl alcohol layer. J Fundam Sci 4:245–252

    Google Scholar 

  31. Yguerabide J, Yguerabide EE (1998) Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications: I. Theory. Anal Biochem 262(2):137–156

    Article  Google Scholar 

  32. Luo C, Tang H, Cheng W, Yan L, Zhang D, Ju H, Ding S (2013) A sensitive electrochemical DNA biosensor for specific detection of Enterobacteriaceae bacteria by Exonuclease III-assisted signal amplification. Biosens Bioelectron 48:132–137. doi:10.1016/j.bios.2013.03.084

    Article  Google Scholar 

  33. Jain R, Sharma S (2012) Glassy carbon electrode modified with multi-walled carbon nanotubes sensor for the quantification of antihistamine drug pheniramine in solubilized systems. J Pharm Anal 2(1):56–61

    Article  Google Scholar 

  34. Aydogdu G, Zeybek DK, Pekyardimci S, Kiliç E (2013) A novel amperometric biosensor based on ZnO nanoparticles-modified carbon paste electrode for determination of glucose in human serum. Artif Cells Nanomed Biotechnol 41(5):332–338

    Article  Google Scholar 

  35. S-f Liu, Y-f Li, J-r Li, Jiang L (2005) Enhancement of DNA immobilization and hybridization on gold electrode modified by nanogold aggregates. Biosens Bioelectron 21(5):789–795

    Article  Google Scholar 

  36. Ilkhani H, Arvand M, Ganjali MR, Marrazza G, Mascini M (2013) Nanostructured screen printed graphite electrode for the development of a novel electrochemical genosensor. Electroanalysis 25(2):507–514

    Article  Google Scholar 

  37. Chen L, Zhang L, Qiu T, Cao W (2011) Chemiluminescent detection of DNA hybridization based on signal DNA probe modified with gold and cobalt nanoparticles. Int J Electrochem Sci 6:5325–5336

    Google Scholar 

  38. Liu S, Liu J, Wang L, Zhao F (2010) Development of electrochemical DNA biosensor based on gold nanoparticle modified electrode by electroless deposition. Bioelectrochemistry 79(1):37–42. doi:10.1016/j.bioelechem.2009.10.005

    Article  Google Scholar 

  39. Hezard T, Fajerwerg K, Evrard D, Collière V, Behra P, Gros P (2012) Gold nanoparticles electrodeposited on glassy carbon using cyclic voltammetry: application to Hg(II) trace analysis. J Electroanal Chem 664:46–52

    Article  Google Scholar 

  40. Bettazzi F, Lucarelli F, Palchetti I, Berti F, Marrazza G, Mascini M (2008) Disposable electrochemical DNA-array for PCR amplified detection of hazelnut allergens in foodstuffs. Anal Chim Acta 614(1):93–102

    Article  Google Scholar 

  41. Pournaghi-Azar M, Hejazi M, Alipour E (2006) Developing an electrochemical deoxyribonucleic acid (DNA) biosensor on the basis of human interleukine-2 gene using an electroactive label. Anal Chim Acta 570(2):144–150

    Article  Google Scholar 

  42. Loaiza ÓA, Campuzano S, López-Berlanga M, Pedrero M, Pingarrón JM (2005) Development of a DNA sensor based on alkanethiol self-assembled monolayer-modified electrodes. Sensors 5(6):344–363

    Article  Google Scholar 

  43. Alegret S, Merkoçi A (2007) Electrochemical sensor analysis, vol 49. Elsevier, Amsterdam

    Book  Google Scholar 

  44. Souza E, Nascimento G, Santana N, Danielly F, Lima M, Natividade E, Martins D, Lima-Filho J (2011) Label-free electrochemical detection of the specific oligonucleotide sequence of dengue virus type 1 on pencil graphite electrodes. Sensors 11:5616–5629

    Article  Google Scholar 

  45. Oliveira N, Souza E, Ferreira D, Zanforlin D, Bezerra W, Borba MA, Arruda M, Lopes K, Nascimento G, Martins D (2015) A sensitive and selective label-free electrochemical DNA biosensor for the detection of specific dengue virus serotype 3 sequences. Sensors 15(7):15562–15577

    Article  Google Scholar 

  46. Tedjo A, Ibrahim AS, Kusmardi (2010) Photoelectrochemical detection of dengue-related oligonucleotide sequence using anthocyanin as a intercalating agent and electrochromic material. Makara Seri Kesehatan 14(2):70–74

    Google Scholar 

  47. Ribeiro Teles FR, França dos Prazeres DM, de Lima-Filho JL (2007) Electrochemical detection of a dengue-related oligonucleotide sequence using ferrocenium as a hybridization indicator. Sensors 7(11):2510–2518

    Article  Google Scholar 

  48. Iyer MA, Oza G, Velumani S, Maldonado A, Romero J, Muñoz MdL, Sridharan M, Asomoza R, Yi J (2014) Scanning fluorescence-based ultrasensitive detection of dengue viral DNA on ZnO thin films. Sens Actuators B Chem 202:1338–1348

    Article  Google Scholar 

  49. Deng J, Toh CS (2013) Impedimetric DNA biosensor based on a nanoporous alumina membrane for the detection of the specific oligonucleotide sequence of dengue virus. Sensors 13:7774–7785. doi:10.3390/s130607774

    Article  Google Scholar 

  50. Huang S, Li C, Lin B, Qin J (2010) Microvalve and micropump controlled shuttle flow microfluidic device for rapid DNA hybridization. Lab Chip 10:2925–2931. doi:10.1039/c005227b

    Article  Google Scholar 

  51. Zhang G-J, Zhang L, Huang MJ, Luo ZHH, Tay GKI, Lim E-JA, Kang TG, Chen Y (2010) Silicon nanowire biosensor for highly sensitive and rapid detection of Dengue virus. Sens Actuators B Chem 146(1):138–144

    Article  Google Scholar 

  52. Rai V, Hapuarachchi HC, Ng LC, Soh SH, Leo YS, Toh C-S (2012) Ultrasensitive cDNA detection of dengue virus RNA using electrochemical nanoporous membrane-based biosensor. PLoS ONE 7(8):e42346

    Article  Google Scholar 

  53. Senapati S, Slouka Z, Shah SS, Behura SK, Shi Z, Stack MS, Severson DW, Chang H-C (2014) An ion-exchange nanomembrane sensor for detection of nucleic acids using a surface charge inversion phenomenon. Biosens Bioelectron 60:92–100

    Article  Google Scholar 

  54. Zaytseva NV, Montagna RA, Baeumner AJ (2005) Microfluidic biosensor for the serotype-specific detection of dengue virus RNA. Anal Chem 77(23):7520–7527

    Article  Google Scholar 

  55. Díaz-Badillo A, Muñoz ML, Ramirez GL, Altuzar V, Burgueño J, Alvarez JGM, Muñoz JPM, Cisneros A, Espinosaand JN, Sinencio FS (2014) A DNA microarray-based assay to detect dual infection with two dengue virus serotypes. Sensors 14:7580–7601. doi:10.3390/s140507580

    Article  Google Scholar 

  56. Abdul Rahman S, Saadun R, Azmi NE, Ariffin N, Abdullah J, Yusof NA, Sidek H, Hajian R (2014) Label-free dengue detection utilizing PNA/DNA hybridization based on the aggregation process of unmodified gold nanoparticles. J Nanomater 2014:1–5. doi:10.1155/2014/839286

    Article  Google Scholar 

  57. Nascimento HP, Oliveira MD, de Melo CP, Silva GJ, Cordeiro MT, Andrade CA (2011) An impedimetric biosensor for detection of dengue serotype at picomolar concentration based on gold nanoparticles-polyaniline hybrid composites. Colloids Surf B 86(2):414–419

    Article  Google Scholar 

  58. Lee Yu HL, Montesa CM, Rojas NSL, Enriquez EP (2012) Nucleic-acid based lateral flow strip biosensor via competitive binding for possible dengue detection. J Biosens Biolectron 3(5):128. doi:10.4172/2155-6210.1000128

    Google Scholar 

  59. Chen S-H, Chuang Y-C, Lu Y-C, Lin H-C, Yang Y-L, Lin C-S (2009) A method of layer-by-layer gold nanoparticle hybridization in a quartz crystal microbalance DNA sensing system used to detect dengue virus. Nanotechnology 20(21):215501

    Article  Google Scholar 

  60. Ngo HT, Wang HS, Fales A, Nicholson B, Woods CW, Vo-Dinh T (2014) DNA bioassay-on-chip using SERS detection for dengue diagnosis. Analyst 139:5655–5659. doi:10.1039/c4an01077a

    Article  Google Scholar 

Download references

Acknowledgements

This research was support by the Ministry of Science, Technology and Innovation (MOSTI) with Grant number NND/ND/(1)/TD11-008 under the National Nanotechnology Directorate (NND).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nor Azah Yusof or Reza Hajian.

Ethics declarations

Conflict of interest

No conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdul Rashid, J.I., Yusof, N.A., Abdullah, J. et al. Surface modifications to boost sensitivities of electrochemical biosensors using gold nanoparticles/silicon nanowires and response surface methodology approach. J Mater Sci 51, 1083–1097 (2016). https://doi.org/10.1007/s10853-015-9438-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9438-6

Keywords

Navigation