Advertisement

Journal of Materials Science

, Volume 51, Issue 2, pp 1066–1073 | Cite as

Calculation and fabrication of two-dimensional complete photonic bandgap structures composed of rutile TiO2 single crystals in air/liquid

  • Sachiko MatsushitaEmail author
  • Akihiro Matsutani
  • Yasushi Morii
  • Daito Kobayashi
  • Kunio Nishioka
  • Dai Shoji
  • Mina Sato
  • Tetsu Tatsuma
  • Takumi Sannomiya
  • Toshihiro Isobe
  • Akira Nakajima
Original Paper

Abstract

Photoelectrochemical applications of photonic crystals are gathering great interests both from physicists and chemists. Here, we theoretically and experimentally present two-dimensional photonic bandgap (2D-PBG) structures based on rutile titanium dioxide (TiO2) single crystal that is a famous material because of the photoelectrochemical ability. The structures were the arrays of hollow hexagonal rutile TiO2 pillars in contact with air or a typical nonaqueous electrolyte solution, acetonitrile. Since the TiO2 refractive indices exhibit a strong dispersive behavior, the bandgap width was discussed from the viewpoint of the refractive index map that would be helpful for the real application of this structure. The 2D-PBG structures for both infrared light and visible light were fabricated by our established lithography technique for rutile TiO2 with and without Nb doping, i.e., photocatalytic TiO2 and high electron conductive TiO2, respectively. These structures show characteristic absorbance peaks or reflectance dips at wavelengths predicted by our theoretical calculations.

Keywords

TiO2 Rutile Photonic Crystal Photonic Bandgap Transverse Electric 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work is supported by the Murata Science Foundation, the Asahi Glass Foundation, the Shimadzu Science Foundation, and the Japan Society for the Promotion of Science (JSPS) KAKENHI 25420707 and 24108708.

References

  1. 1.
    Sakoda K (2001) Optical properties of photonic crystals. Springer, New YorkCrossRefGoogle Scholar
  2. 2.
    Joannopoulos JD, Johnson SG, Winn JN, Meade RD (2008) Photonic crystals: molding the flow of light. Princeton University Press, New JerseyGoogle Scholar
  3. 3.
    Busch K, Lölkes S, Wehrspohn RB, Föhl H (2004) Photonic crystal. Wiley, WeinheimCrossRefGoogle Scholar
  4. 4.
    Arpin KA, Mihi A, Johnson HT et al (2010) Multidimensional architectures for functional optical devices. Adv Mater 22:1084–1101CrossRefGoogle Scholar
  5. 5.
    Akahane Y, Asano T, Song B-S, Noda S (2003) High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425:944−947CrossRefGoogle Scholar
  6. 6.
    Ryu H-Y, Kwon S-H, Lee Y-J, Lee Y-H, Kim J-S (2002) Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs. Appl Phys Lett 80:3476–3478CrossRefGoogle Scholar
  7. 7.
    Fang M, Volotinen TT, Kulkarni SK, Belova L, Rao KV (2010) Effect of embedding Fe3O4 nanoparticles in silica spheres on the optical transmission properties of three-dimensional magnetic photonic crystals. J Appl Phys 108:103501CrossRefGoogle Scholar
  8. 8.
    Wierer JJ, David A, Megens MM (2009) III-nitride photonic-crystal light-emitting diodes with high extraction efficiency. Nat Photonics 3:163–169CrossRefGoogle Scholar
  9. 9.
    Mekis A, Chen JC, Kurland I, Fan S, Villeneuve PR, Joannopoulos JD (1996) High Transmission through sharp bends in photonic crystal waveguides. Phys Rev Lett 77:3787CrossRefGoogle Scholar
  10. 10.
    Miyai E, Noda S (2004) Structural dependence of coupling between a two-dimensional photonic crystal waveguide and a wire waveguide. J Opt Soc Am B 21:67–72CrossRefGoogle Scholar
  11. 11.
    Cregan RF, Mangan BJ, Knight JC et al (1999) Single-mode photonic band gap guidance of light in air. Science 285:1537–1539CrossRefGoogle Scholar
  12. 12.
    Chen JSY, Euser TG, Farrer NJ, Sadler PJ, Scharrer M, Russell PSJ (2010) Photochemistry in photonic crystal fiber nanoreactors. Chem Eur J 16:5607–5612CrossRefGoogle Scholar
  13. 13.
    Chen JIL, Loso E, Ebrahim N, Ozin GA (2008) Synergy of slow photon and chemically amplified photochemistry in platinum nanocluster-loaded inverse titania opals. J Am Chem Soc 130:5420–5421CrossRefGoogle Scholar
  14. 14.
    Matsushita SI, Fukuda N, Shimomura M (2005) Photochemically functional photonic crystals prepared by using a two-dimensional particle-array template. Colloid Surf A 257–258:15–17CrossRefGoogle Scholar
  15. 15.
    Wang P, Zakeeruddin SM, Humphry-Baker R, Moser JE, Grätzel M (2003) Molecular-scale interface engineering of TiO2 nanocrystals: improve the efficiency and stability of dye-sensitized solar cells. Adv Mater 15:2101–2104CrossRefGoogle Scholar
  16. 16.
    Zhang D, Yoshida T, Minoura H (2003) Low-temperature fabrication of efficient porous titania photoelectrodes by hydrothermal crystallization at the solid/gas interface. Adv Mater 15:814–817CrossRefGoogle Scholar
  17. 17.
    Kamat PV (1993) Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem Rev 93:267–300CrossRefGoogle Scholar
  18. 18.
    Nishimura S, Abrams N, Lewis BA et al (2003) Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals. J Am Chem Soc 125:6306–6310CrossRefGoogle Scholar
  19. 19.
    Dorado LA, Depine RA, Schinca D, Lozano G, Míguez H (2008) Experimental and theoretical analysis of the intensity of beams diffracted by three-dimensional photonic crystals. Phys Rev B 78:075102CrossRefGoogle Scholar
  20. 20.
    Tao C-A, Zhu W, An Q, Li G (2010) Theoretical demonstration of efficiency enhancement of dye-sensitized solar cells with double-inverse opal as mirrors. J Phys Chem C 114:10641–10647CrossRefGoogle Scholar
  21. 21.
    Guo M, Xie K, Lin J et al (2012) Design and coupling of multifunctional TiO2 nanotube photonic crystal to nanocrystalline titania layer as semi-transparent photoanode for dye-sensitized solar cell. Energy Environ Sci 5:9881–9888CrossRefGoogle Scholar
  22. 22.
    Yip CT, Huang H, Zhou L et al (2011) Direct and seamless coupling of TiO2 nanotube photonic crystal to dye-sensitized solar cell: a single-step approach. Adv Mater 23:5624–5628CrossRefGoogle Scholar
  23. 23.
    Kim S-H, Lee SY, Yang S-M, Yi G-R (2011) Self-assembled colloidal structures for photonics. NPG Asia Mater. 3:25–33CrossRefGoogle Scholar
  24. 24.
    Matsushita S, Miwa T, Fujishima A (1997) Preparation of a new nanostructured TiO2 surface using a two-dimensional array-based template. Chem Lett 9:925–926CrossRefGoogle Scholar
  25. 25.
    Matsushita SI, Miwa T, Tryk DA, Fujishima A (1998) New mesostructured porous TiO2 surface prepared using a two-dimensional array-based template of silica particles. Langmuir 14:6441–6447CrossRefGoogle Scholar
  26. 26.
    Frölich A, Fischer J, Zebrowski T, Busch K, Wegener M (2013) Titania woodpiles with complete three-dimensional photonic bandgaps in the visible. Adv Mater 25:3588–3592CrossRefGoogle Scholar
  27. 27.
    Matsushita S, Hayashi M, Isobe T, Nakajima A (2012) Simulation design for rutile-TiO2 nanostructures with a large complete-photonic bandgap in electrolytes. Crystals 2:1483–1491CrossRefGoogle Scholar
  28. 28.
    Matsushita S, Suavet O, Hashiba H (2010) Full-photonic-bandgap structures for prospective dye-sensitized solar cells. Electrochim Acta 55:2398–2403CrossRefGoogle Scholar
  29. 29.
    Matsushita S, Fujiwara R, Shimomura M (2008) Calculation of photonic energy bands of self-assembled-type TiO2 photonic crystals as dye-sensitized solar battery. Colloid Surf A 313–314:617–620CrossRefGoogle Scholar
  30. 30.
    Rams J, Tejeda A, Cabrera JM (1997) Refractive indices of rutile as a function of temperature and wavelength. J Appl Phys 82:994–997CrossRefGoogle Scholar
  31. 31.
    Akihiro M, Kunio N, Mina S et al (2014) Angled etching of (001) rutile Nb–TiO2 substrate using SF6-based capacitively coupled plasma reactive ion etching. Jpn J Appl Phys 53:06JF02CrossRefGoogle Scholar
  32. 32.
    Matsutani A, Hayashi M, Morii Y et al (2012) SF6-based deep reactive ion etching of (001) rutile TiO2 substrate for photonic crystal structure with wide complete photonic band gap. Jpn J Appl Phys 51:098002Google Scholar
  33. 33.
    Junesch J, Sannomiya T (2014) Ultrathin suspended nanopores with surface plasmon resonance fabricated by combined colloidal lithography and film transfer. ACS Appl Mater Interfaces 6:6322–6331CrossRefGoogle Scholar
  34. 34.
    Cronemeyer DC (1952) Electrical and optical properties of rutile single crystals. Phys Rev 87:876CrossRefGoogle Scholar
  35. 35.
    Han K, Kim JH (2011) Reflectance modulation of transparent multilayer thin films for energy efficient window applications. Mater Lett 65:2466–2469CrossRefGoogle Scholar
  36. 36.
    Pereira ALJ, Filho PNL, Acuna J et al (2012) Enhancement of optical absorption by modulation of the oxygen flow of TiO2 films deposited by reactive sputtering. J Appl Phys 111:113513CrossRefGoogle Scholar
  37. 37.
    Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276CrossRefGoogle Scholar
  38. 38.
    Kay A, Humphry-Baker R, Graetzel M (1994) Artificial photosynthesis. 2. Investigations on the mechanism of photosensitization of nanocrystalline TiO2 solar cells by chlorophyll derivatives. J Phys Chem 98:952CrossRefGoogle Scholar
  39. 39.
    Kato G, Nishiyama C, Yabuta T et al (2014) Pore size dependence of self-assembled type photonic crystal on dye-sensitized solar cells efficiency utilising Chlorine e6. J Porous Mater 21:165–176CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Sachiko Matsushita
    • 1
    Email author
  • Akihiro Matsutani
    • 2
  • Yasushi Morii
    • 1
  • Daito Kobayashi
    • 1
  • Kunio Nishioka
    • 2
  • Dai Shoji
    • 2
  • Mina Sato
    • 2
  • Tetsu Tatsuma
    • 3
  • Takumi Sannomiya
    • 1
  • Toshihiro Isobe
    • 1
  • Akira Nakajima
    • 1
  1. 1.Department of Metallurgy & Ceramics Science, Graduate School of Science & TechnologyTokyo Institute of TechnologyTokyoJapan
  2. 2.Technical Department, Semiconductor and MEMS Processing CenterTokyo Institute of TechnologyYokohamaJapan
  3. 3.Institute of Industrial ScienceThe University of TokyoTokyoJapan

Personalised recommendations