Skip to main content
Log in

Effect of manganese and cobalt ions on flame retardancy and thermal degradation of bio-based alginate films

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Bio-based cobalt alginate and manganese alginate films were prepared by a facile ionic exchange and casting approach. Their flame retardancy, thermal degradation, and pyrolysis properties were investigated by vertical burning (UL-94), limiting oxygen index (LOI), thermogravimetric analysis, microscale combustion calorimetry (MCC), thermogravimetric analyzer coupled with Fourier transform infrared analysis (TG–FTIR), and pyrolysis–gas chromatography–mass spectrometry (Py–GC–MS). It showed that cobalt alginate film had much higher LOI value (45.0 %) than those of manganese alginate film (30.7 %) and sodium alginate film (24.5 %). Moreover, cobalt alginate film passed UL-94 V-0 rating, while manganese alginate and sodium alginate films showed no rating. Importantly, peak of heat release rate of cobalt alginate and manganese alginate in MCC test was much lower than that of sodium alginate, suggesting that the addition of cobalt ion and manganese ion decreases the release of combustible gases. TG–FTIR and Py–GC–MS results indicated that cobalt alginate and manganese alginate produced much less gaseous products than that of sodium alginate. Finally, a possible thermal degradation mechanism of cobalt alginate and manganese alginate had been proposed. The results provided useful information for understanding flame-retardant mechanism of alginate as well as for designing bio-based materials with excellent fire-retardant properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang X, Romero MQ, Zhang XQ, Wang R, Wang DY (2015) Intumescent multilayer hybrid coating for flame retardant cotton fabrics based on layer-by-layer assembly and sol-gel process. RSC Adv 5:10647–10655. doi:10.1039/C4RA14943B

    Article  Google Scholar 

  2. Alongi J, Carletto RA, Bosco F, Carosio F, Blasio AD, Cuttica F, Antonucci V, Giordano M, Malucelli G (2014) Caseins and hydrophobins as novel green flame retardants for cotton fabrics. Polym Degrad Stab 99:111–117. doi:10.1016/j.polymdegradstab.2013.11.016

    Article  Google Scholar 

  3. Li DM, Chen LM, Zhang XW, Ye NH, Xing FG (2011) Pyrolytic characteristics and kinetic studies of three kinds of red algae. Biomass Bioenerg 35:1765–1772. doi:10.1016/j.biombioe.2011.01.011

    Article  Google Scholar 

  4. Shukor F, Hassan A, Islam MS, Molhtar M, Hasan M (2014) Effect of ammonium polyphosphate on flame retardancy, thermal stability and mechanical properties of alkali treated kenaf fiber filled PLA biocomposites. Mater Des 54:425–429. doi:10.1016/j.matdes.2013.07.095

    Article  Google Scholar 

  5. Wang L, Sánchez-Soto M, Maspoch ML (2013) Polymer/clay aerogel composites with flame retardant agents: mechanical, thermal and fire behavior. Mater Des 52:609–614. doi:10.1016/j.matdes.2013.05.096

    Article  Google Scholar 

  6. Ross AB, Anastasakis K, Kubachi M, Jones JM (2009) Investigation of the pyrolysis behaviour of brown algae before and after pre-treatment using PY-GC/MS and TGA. J Anal Appl Pyrolysis 85:3–10. doi:10.1016/j.jaap.2008.11.004

    Article  Google Scholar 

  7. Pan HF, Wang W, Pan Y, Song L, Hu Y, Liew KM (2015) Formation of self-extinguishing flame retardant biobased coating on cotton fabrics via layer-by-layer assembly of chitin derivatives. Carbohydr Polym 115:516–524. doi:10.1016/j.carbpol.2014.08.084

    Article  Google Scholar 

  8. Ross AB, Hall C, Anastasakis K, Westwood A, Jones JM, Crewe RJ (2011) Influence of cation on the pyrolysis and oxidation of alginates. J Anal Appl Pyrolysis 91:344–351. doi:10.1016/j.jaap.2011.03.012

    Article  Google Scholar 

  9. Pathak TS, Yun JH, Lee SJ, Baek DJ, Paeng KJ (2009) Effect of cross-linker and cross-linker concentration on porosity, surface morphology and thermal behavior of metal alginates prepared from algae (Undaria pinnatifida). Carbohydr Polym 78:717–724. doi:10.1016/j.carbpol.2009.06.011

    Article  Google Scholar 

  10. Chen HB, Wang YZ, Sánchez-Soto M, Schiraldi DA (2012) Low flammability, foam-like materials based on ammonium alginate and sodium montmorillonite clay. Polymer 53:5825–5831. doi:10.1016/j.polymer.2012.10.029

    Article  Google Scholar 

  11. Tod CW (1946) Prod Alginate Solut. US patent 2(405):861

    Google Scholar 

  12. Papageorgiou SK, Kouvelos EP, Favvas EP, Sapalidis AA, Romanos GE, Katsaros FK (2010) Metal-carboxylate interactions in metal-alginate complexes studied with FTIR spectroscopy. Carbohydr Res 345:469–473. doi:10.1016/j.carres.2009.12.010

    Article  Google Scholar 

  13. Atkins EDT, Nieduszynski IA, Mackie W, Parker KD, Smolko EE (1973) Structural components of alginic acid. II. the crystalline structure of poly-α-l-guluronic acid. results of X-ray diffraction and polarized infrared studies. Biopolymers 12:1879–1887. doi:10.1002/bip.1973.360120814

    Article  Google Scholar 

  14. Cuadros TR, Erices AA, Aguilera JM (2015) Porous matrix of calcium alginate/gelatin with enhanced properties as scaffold for cell culture. J Mech Behav Biomed Mater 46:331–342. doi:10.1016/j.jmbbm.2014.08.026

    Article  Google Scholar 

  15. Qin YM (2008) Alginate fibres: an overview of the production processes and applications in wound management. Polym Int 57:171–180. doi:10.1002/pi.2296

    Article  Google Scholar 

  16. Shen W, Hsieh YL (2014) Biocompatible sodium alginate fibers by aqueous processing and physical crosslinking. Carbohydr Polym 102:893–900. doi:10.1016/j.carbpol.2013.10.066

    Article  Google Scholar 

  17. Zhang JJ, Ji Q, Shen XH, Xia YZ, Tan LW, Kong QS (2011) Pyrolysis products and thermal degradation mechanism of intrinsically flame-retardant calcium alginate fibre. Polym Degrad Stab 96:936–942. doi:10.1016/j.polymdegradstab.2011.01.029

    Article  Google Scholar 

  18. Zhang JJ, Ji Q, Wang FJ, Tan LW, Xia YZ (2012) Effects of divalent metal ions on the flame retardancy and pyrolysis products of alginate fibres. Polym Degrad Stab 97:1034–1040. doi:10.1016/j.polymdegradstab.2012.03.004

    Article  Google Scholar 

  19. Kong QS, Wang BB, Ji Q, Xia YZ, Guo ZX, Yu J (2009) Thermal degradation and flame retardancy of calcium alginate fibers. Chin J Polym Sci 27:807–812. doi:10.1142/S0256767909004527

    Article  Google Scholar 

  20. Zhang CJ, Zhang NN, Wang Z, Zhu P (2011) Flame retardant properties of calcium alginate fibers. Print Finish 8:1–5

    Google Scholar 

  21. Liu Y, Zhao JC, Zhang CJ, Ji H, Zhu (2014) The flame retardancy, thermal properties, and degradation mechanism of zinc alginate films. J Macromol Sci B 53:1074–1089. doi:10.1080/00222348.2014.891169

    Article  Google Scholar 

  22. Liu Y, Wang JS, Zhao JC, Zhang CJ, Ran JH, Zhu P (2014) The flame retardancy and thermal degradation behaviors of trivalent metal-alginate films. Nanomater Energy 3:3–10. doi:10.1680/nme.13.00030

    Article  Google Scholar 

  23. Liu Y, Li ZF, Wang JS, Zhu P, Zhao JC, Zhang CJ, Guo Y, Jin X (2015) Thermal degradation and pyrolysis behavior of aluminum alginate investigated by TG-FTIR-MS and Py-GC-MS. Polym Degrad Stab 118:59–68. doi:10.1016/j.polymdegradstab.2015.04.010

    Article  Google Scholar 

  24. Wang N, Wu YH, Mi L, Zhang J, Li XR, Fang QH (2014) The influence of silicone shell on double-layered microcapsules in intumescent flame-retardant natural rubber composites. J Therm Anal Calorim 118:349–357. doi:10.1007/s10973-014-3965-2

    Article  Google Scholar 

  25. Yang CQ, He QL, Lyon RE, Hu Y (2010) Investigation of the flammability of different textile fabrics using micro-scale combustion calorimetry. Polym Degrad Stab 95:108–115. doi:10.1016/j.polymdegradstab.2009.11.047

    Article  Google Scholar 

  26. Wang DY, Leuteritz A, Kutlu B, Landwehr MA, Jehnichen D, Wagenknecht U, Heinrich G (2011) Preparation and investigation of the combustion behavior of polypropylene/organomodified MgAl-LDH micro-nanocomposite. J Alloy Compd 509:3497–3501. doi:10.1016/j.jallcom.2010.12.138

    Article  Google Scholar 

  27. Chen XL, Huo LL, Jiao CM, Li SX (2013) TG–FTIR characterization of volatile compounds from flame retardant polyurethane foams materials. J Anal Appl Pyrolysis 100:186–191. doi:10.1016/j.jaap.2012.12.017

    Article  Google Scholar 

  28. Wu SL, Shen DK, Xiao R, Zhang HY (2013) TG-FTIR and Py-GC-MS analysis of a model compound of cellulose-glyceraldehyde. J Anal Appl Pyrolysis 101:79–85. doi:10.1016/j.jaap.2013.02.009

    Article  Google Scholar 

  29. Zhao J, Wang XW, Hu J, Liu Q, Shen DK, Xiao R (2014) Thermal degradation of softwood lignin and hardwood lignin by TG-FTIR and Py-GC/MS. Polym Degrad Stab 108:133–138. doi:10.1016/j.polymdegradstab.2014.06.006

    Article  Google Scholar 

  30. Wang SQ, Tang YG, Schobert HH, Guo YN, Gao WC, Lu XK (2013) FTIR and simultaneous TG/MS/FTIR study of Late Permian coals from Southern China. J Anal Appl Pyrolysis 100:75–80. doi:10.1016/j.jaap.2012.11.021

    Article  Google Scholar 

  31. Gao NB, Li AM, Quan C, Du L, Duan Y (2013) TG-FTIR and Py-GC/MS analysis on pyrolysis and combustion of pine sawdust. J Anal Appl Pyrolysis 100:26–32. doi:10.1016/j.jaap.2012.11.009

    Article  Google Scholar 

  32. Liu Y, Zhao XR, Peng YL, Peng H, Zhu P, Wang DY (2015) Effect of reactive time on the properties and the pyrolysis mechanism of zinc alginate films by TG-FTIR and Py-GC-MS. Polym Degrad Stab. submitted

  33. Piskorz J, Radlein D, Scott DS (1986) On the mechanism of the rapid pyrolysis of cellulose. J Anal Appl Pyrolysis 9:121–137. doi:10.1016/0165-2370(86)85003-3

    Article  Google Scholar 

  34. Lu Q, Yang XC, Dong CQ, Zhang ZF, Zhang XM, Zhu XF (2011) Influence of pyrolysis temperature and time on the cellulose fast pyrolysis products: analytical Py-GC/MS study. J Anal Appl Pyrolysis 92:430–438. doi:10.1016/j.jaap.2011.08.006

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51203126) and China Scholarship Council (CSC: 201308420380).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Zhu or De-Yi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhao, JC., Zhang, CJ. et al. Effect of manganese and cobalt ions on flame retardancy and thermal degradation of bio-based alginate films. J Mater Sci 51, 1052–1065 (2016). https://doi.org/10.1007/s10853-015-9435-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9435-9

Keywords

Navigation