Proton-radiation resistance of poly(ethylene terephthalate)–nanodiamond–graphene nanoplatelet nanocomposites

Abstract

Poly(ethylene terephthalate) nanocomposites reinforced with 1 wt% of nanodiamond terminated with carboxylic groups or nanodiamond and 0.3 wt% nanographene platelets were prepared by simple melt blending in a twin-screw extruder to create high-performance polymer nanocomposites for application in high radiation environments. A study of structural modifications introduced by high-energy, 3 MeV proton beam irradiation of poly(ethylene terephthalate) and its nanocomposites was conducted using attenuated total reflectance Fourier transform infrared and Raman spectroscopy, differential scanning calorimetry, and photoluminescence measurements. It was shown that the composite materials containing small concentrations of nanodiamonds or nanodiamonds plus nanographene platelets exhibit improved radiation resistance compared with neat poly(ethylene terephthalate) exposed to proton irradiation under the same irradiation conditions. The nanocomposites containing the combination of nanodiamonds and nanographene platelets exhibited the highest stability. Nanofillers, particularly nanographene platelets, stabilized the amorphous phase and increased the crystallinity of polymer matrix exposed to proton irradiation, preserving polymer conformation, molecular weight distribution, and overall thermal properties of irradiated nanocomposites.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Jabarin SA (1996) Polymeric materials encyclopedia. CRC press, New York, pp 6078–6085, 6091–6100

  2. 2.

    Chandy T, Das GS, Wilson RF, Rao GHR (2000) Use of plasma glow for surface-engineering biomolecules to enhance blood compatibility of Dacron and PTFE vascular prosthesis. Biomaterials 21:699–712

    Article  Google Scholar 

  3. 3.

    Bisson I, Kosinski M, Ruault S, Gupta B, Hilborn J, Frey P (2002) Acrylic acid grafting and collagen immobilization on poly(ethylene terephthalate) surfaces for adherence and growth of human bladder smooth muscle cells. Biomaterials 23:3149–3158

    Article  Google Scholar 

  4. 4.

    Ravindranath K, Mashelkar RA (1986) Polyethylene terephthalate—I. Chemistry, thermodynamics and transport properties. Chem Eng Sci 41:2197–2214

    Article  Google Scholar 

  5. 5.

    Varma P, Lofgren EA, Jabarin SA (1998) Properties and kinetics of thermally crystallized orientated poly(ethylene terephthalate) (PET) I: kinetics of crystallization. Polym Eng Sci 38:237–244

    Article  Google Scholar 

  6. 6.

    Hanemann T, Szabó DV (2010) Polymer-nanoparticle composites: from synthesis to modern applications. Materials 3:3468–3517

    Article  Google Scholar 

  7. 7.

    Vaia RA, Wagner HD (2004) Framework for nanocomposites. Mater Today 7:32–37

    Article  Google Scholar 

  8. 8.

    Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641

    Article  Google Scholar 

  9. 9.

    Carrado KA (2003) Polymer-clay nanocomposites. In: Shonaike GO, Advani SG (eds) Advanced polymeric materials: structure property relationships. CRC Press, Boca Raton, pp 349–396

    Google Scholar 

  10. 10.

    Mishra R, Tripathy SP, Sinha D, Dwivedi KK, Ghosh S, Khathing DT, Muller M, Fink D, Chung WH (2000) Optical and electrical properties of some electron and proton irradiated polymers. Nucl Instrum Methods B 168:59–64

    Article  Google Scholar 

  11. 11.

    Bridwell LB, Giedd RE, Wang YQ, Mohite SS, Jahnke T (1991) Ion implantation of polymers for electrical conductivity enhancement. Nucl Instrum Methods B 56(57):656–659

    Article  Google Scholar 

  12. 12.

    Keiji U, Yasuyo M, Nobuyuki N, Mitsuru N, Mamoru S (1991) Effects of high-energy (MeV) ion implantation of polyester films. Nucl Instrum Methods B 59(60):1263–1266

    Article  Google Scholar 

  13. 13.

    Singh NL, Shah N, Desai CF, Singhb KP, Arora SK (2004) Modification of polyethylene terephthalate by proton irradiation. Radiat Eff Defect Solids 159:475–482

    Article  Google Scholar 

  14. 14.

    Singh NL, Shah N, Singh KP, Desai CF (2005) Electrical and thermal behavior of proton irradiated polymeric blends. Radiat Meas 40:741–745

    Article  Google Scholar 

  15. 15.

    Fink D (2004) Springer series in material science: fundamentals of ion-irradiated polymers. Springer, Berlin Heidelberg

    Google Scholar 

  16. 16.

    Cury Camargo PH, Gundappa Satyanarayana K, Wypych F (2009) Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res 12:1–39

    Article  Google Scholar 

  17. 17.

    Kim JY, Kim SH (2012) High performance PET/carbon nanotube nanocomposites: preparation, characterization, properties and applications. In: Ebrahimi F (ed) Nanocomposites—new trends and developments. InTech, Chapter 5

  18. 18.

    Tzavalas S, Mouzakis DE, Drakonakis V, Gregoriou VG (2008) Polyethylene terephthalate–multiwall nanotubes nanocomposites: effect of nanotubes on the conformations, crystallinity and crystallization behavior of PET. J Polym Sci Part B 46:668–676

    Article  Google Scholar 

  19. 19.

    Liu Y, Kumar S (2014) Polymer/carbon nanotube nano composite fibers—a review. Appl Mater Interfaces 6:6069–6087

    Article  Google Scholar 

  20. 20.

    Wang C, Guo ZX, Fu S, Wu W, Zhu D (2004) Polymers containing fullerene or carbon nanotube structures. Prog Polym Sci 29:1079–1141

    Article  Google Scholar 

  21. 21.

    Mochalin VN, Shenderova O, Ho D, Gogotsi Y (2012) The properties and applications of nanodiamonds. Nat Nanotechnol 7:11–23

    Article  Google Scholar 

  22. 22.

    Borjanovic V, Bistricic L, Mikac L, McGuire GE, Zamboni I, Jaksic M, Shenderova O (2012) Poymer nanocomposites with improved resistance to ionizing radiation. J Vac Sci Technol, B 30:1023–1071

    Article  Google Scholar 

  23. 23.

    Borjanovic V, Bistricic L, Vlasov I, Furic K, Zamboni I, Jaksic M, Shenderova O (2009) Influence of proton irradiation on the structure and stability of poly(dimethylsiloxane) and poly(dimethylsiloxane)-nanodiamond composite. J Vac Sci Technol, B 27:2396–2403

    Article  Google Scholar 

  24. 24.

    Borjanovic V, Lawrence WG, Hens S, Jaksic M, Zamboni I, Edson C, Vlasov I, Shenderova O, McGuire GE (2008) Effect of proton irradiation on photoluminescent properties of PDMS-nanodiamond composites. Nanotechnology 19:455701. doi:10.1088/0957-4484/19/45/455701

    Article  Google Scholar 

  25. 25.

    Borjanovic V, Shenderova O, McGuire GE (2013) Polymer nanocomposites with improved resistance to ionizing radiation, U.S. Patent No. 8, 475, 879

  26. 26.

    Galpaya D, Wang M, Liu M, Motta N, Waclawik E, Yan C (2012) Recent advances in fabrication and characterization of graphene-polymer nanocomposites. Graphene 1:30–49

    Article  Google Scholar 

  27. 27.

    Das TK, Prusty S (2013) Graphene-based polymer composites and their applications. Polym Plast Technol 52:319–331

    Article  Google Scholar 

  28. 28.

    Zhang HB, Zheng WG, Yana Q, Yang Y, Wang JW, Lu ZH, Ji GY, Yu ZZ (2010) Electrically conductive polyethylene terephthalate-graphene nanocomposites prepared by melt compounding. Polymer 51:1191–1196

    Article  Google Scholar 

  29. 29.

    Prasad KE, Das B, Maitra U, Upadrasta Ramamurty U, Rao CNR (2009) Extraordinary synergy in the mechanical properties of polymer matrix composites reinforced with 2 nanocarbons. Proc Natl Acad Sci USA 106:13186–13189

    Article  Google Scholar 

  30. 30.

    Shenderova S, Koscheev A, Zaripov N, Petrov I, Skryabin Y, Detkov P, Turner S, Van Tendeloo G (2011) Surface chemistry and properties of ozone-purified detonation nanodiamonds. J Phys Chem C 115:9827–9837

    Article  Google Scholar 

  31. 31.

    Chen Z, Hay JN, Jenkins MJ (2013) The thermal analysis of poly(ethylene terephthalate) by FTIR spectroscopy. Thermochim Acta 552:123–130

    Article  Google Scholar 

  32. 32.

    Chen Z, Hay JN, Jenkins MJ (2012) FTIR spectroscopic analysis of poly(ethylene terephthalate) on crystallization. Eur Polym J 48:1586–1610

    Article  Google Scholar 

  33. 33.

    Bertoldo M, Massimiliano Labardi M, Rotella C, Capaccioli S (2010) Enhanced crystallization kinetics in poly(ethylene terephthalate) thin films evidenced by infrared spectroscopy. Polymer 51:3660–3668

    Article  Google Scholar 

  34. 34.

    Rastogi R, Vellinga WP, Rastogi S, Schick C, Meijer HEH (2004) The three-phase structure and mechanical properties of poly(ethylene terephthalate). J Polym Sci Pol Phys 42:2092–2106

    Article  Google Scholar 

  35. 35.

    Cunningham A, Ward MI, Willis H, Zichy V (1974) An infra-red spectroscopic study of molecular orientation and conformational changes in poly(ethyleneterephthalate). Polymer 15:749–756

    Article  Google Scholar 

  36. 36.

    Schmidt PG (1963) Polyethylene terephthalate structural studies. J Polym Sci Part A 1:1271–1292

    Google Scholar 

  37. 37.

    Jabarin SA (1982) Optical properties of thermally crystallized poly(ethylene terephthalate). Polym Eng Sci 22:815–820

    Article  Google Scholar 

  38. 38.

    Cole KC, Ajji A, Pellerin E (2002) New insights into the development of ordered structure in poly(ethylene terephthalate)—1. Results from external reflection infrared spectroscopy. Macromolecules 35:770–784

    Article  Google Scholar 

  39. 39.

    Kirov KR, Assender HE (2005) Quantitative ATR-IR analysis of anisotropic polymer films: surface structure of commercial PET. Macromolecules 38:9258–9265

    Article  Google Scholar 

  40. 40.

    Moeller HW (2008) Progress in polymer degradation and stability research. Nova Science Publishers, Inc, New York

    Google Scholar 

  41. 41.

    Quaranta A, Vomiero A, Cartura S, Maggioni G, Mea GD (2002) Polymer film degradation under ion irradiation studied by ion beam induced luminescence (IBIL) and optical analyses. Nucl Instr Methods B 191:680–684

    Article  Google Scholar 

  42. 42.

    Bistricic L, Borjanovic V, Leskovac M, Mikac L, McGuire GE, Shenderova O, Nunn N (2015) Raman spectra, thermal and mechanical properties of poly(ethylene terephthalate) carbon based nanocomposite films. J Polym Res 22:39

    Article  Google Scholar 

  43. 43.

    Zhu P, Ma D (1997) Double cold crystallization peaks of poly(ethylene terephthalate)—1. Samples isothermally crystallized at low temperature. Eur Polym J 33:1817–1818

    Article  Google Scholar 

  44. 44.

    Androsch R, Wunderlich B (2005) The link between rigid amorphous fraction and crystal perfection in cold-crystallized poly(ethylene terephthalate). Polymer 46:12556–12566

    Article  Google Scholar 

  45. 45.

    Tzavalas S, Drakonakis V, Mouzakis DE, Fischer D, Gregoriou VG (2006) Effect of carboxy-functionalized multiwall nanotubes (MWNT-COOH) on the crystallization and chain conformations of poly(ethylene terephthalate) PET in PET-MWNT nanocomposites. Macromolecules 39:9150–9156

    Article  Google Scholar 

  46. 46.

    Righetti MC, Laus M, Di Lorenzo ML (2014) Rigid amorphous fraction and melting behavior of poly(ethylene terephthalate). Colloid Polym Sci 292:1365–1374

    Article  Google Scholar 

  47. 47.

    Bikiaris D, Vassilis K, Karayannidis G (2006) A new approach to prepare poly(ethylene terephthalate)/silica nanocomposites with increased molecular weight and fully adjustable branching or crosslinking by SSP. Macromol Rapid Commun 27:1199–1205

    Article  Google Scholar 

  48. 48.

    Anoop Anand K, Agarwal US, Rani J (2006) Carbon nanotubes induced crystallization of poly(ethylene terephthalate). Polymer 47:3976–3980

    Article  Google Scholar 

  49. 49.

    Biswas A, Lotha S, Fink D, Singh JP, Avasthi DK, Yadav BK, Bose SK, Khating DT, Avasthi AM (1999) The effects of swift heavy ion irradiation on the radiochemistry and melting characteristics of PET. Nucl Instr Methods B 159:40–51

    Article  Google Scholar 

  50. 50.

    Papaleo RM, de Araujo MA, Livi RP (1992) Study of the ion beam induced amorphisation, bond breaking and optical gap change processes in PET. Nucl Instr Methods B 65:442–446

    Article  Google Scholar 

  51. 51.

    Liu C, Jin Y, Sun Y, Hou M, Wang Z, Chen X, Zhang C, Liu J, Liu B, Wang Y (2000) Chemical modifications in polyethylene terephthalate films induced by 35 MeV/u Ar ions. Nucl Instr Methods B 166(167):641–645

    Article  Google Scholar 

  52. 52.

    Nagata S, Takahiro K, Tsuchiya B, Shikama T (2009) Ion beam induced luminescence of polyethylene terephthalate foils under MeV H and He ion bombardment. Nucl Instr Methods B 267:1553–1556

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. Borjanović.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Borjanović, V., Bistričić, L., Pucić, I. et al. Proton-radiation resistance of poly(ethylene terephthalate)–nanodiamond–graphene nanoplatelet nanocomposites. J Mater Sci 51, 1000–1016 (2016). https://doi.org/10.1007/s10853-015-9431-0

Download citation

Keywords

  • Amorphous Phase
  • Proton Irradiation
  • Cold Crystallization
  • Trans Conformation
  • Gauche Conformation