Journal of Materials Science

, Volume 51, Issue 2, pp 1000–1016 | Cite as

Proton-radiation resistance of poly(ethylene terephthalate)–nanodiamond–graphene nanoplatelet nanocomposites

  • V. BorjanovićEmail author
  • L. Bistričić
  • I. Pucić
  • L. Mikac
  • R. Slunjski
  • M. Jakšić
  • G. McGuire
  • A. Tomas Stanković
  • O. Shenderova
Original Paper


Poly(ethylene terephthalate) nanocomposites reinforced with 1 wt% of nanodiamond terminated with carboxylic groups or nanodiamond and 0.3 wt% nanographene platelets were prepared by simple melt blending in a twin-screw extruder to create high-performance polymer nanocomposites for application in high radiation environments. A study of structural modifications introduced by high-energy, 3 MeV proton beam irradiation of poly(ethylene terephthalate) and its nanocomposites was conducted using attenuated total reflectance Fourier transform infrared and Raman spectroscopy, differential scanning calorimetry, and photoluminescence measurements. It was shown that the composite materials containing small concentrations of nanodiamonds or nanodiamonds plus nanographene platelets exhibit improved radiation resistance compared with neat poly(ethylene terephthalate) exposed to proton irradiation under the same irradiation conditions. The nanocomposites containing the combination of nanodiamonds and nanographene platelets exhibited the highest stability. Nanofillers, particularly nanographene platelets, stabilized the amorphous phase and increased the crystallinity of polymer matrix exposed to proton irradiation, preserving polymer conformation, molecular weight distribution, and overall thermal properties of irradiated nanocomposites.


Amorphous Phase Proton Irradiation Cold Crystallization Trans Conformation Gauche Conformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Jabarin SA (1996) Polymeric materials encyclopedia. CRC press, New York, pp 6078–6085, 6091–6100Google Scholar
  2. 2.
    Chandy T, Das GS, Wilson RF, Rao GHR (2000) Use of plasma glow for surface-engineering biomolecules to enhance blood compatibility of Dacron and PTFE vascular prosthesis. Biomaterials 21:699–712CrossRefGoogle Scholar
  3. 3.
    Bisson I, Kosinski M, Ruault S, Gupta B, Hilborn J, Frey P (2002) Acrylic acid grafting and collagen immobilization on poly(ethylene terephthalate) surfaces for adherence and growth of human bladder smooth muscle cells. Biomaterials 23:3149–3158CrossRefGoogle Scholar
  4. 4.
    Ravindranath K, Mashelkar RA (1986) Polyethylene terephthalate—I. Chemistry, thermodynamics and transport properties. Chem Eng Sci 41:2197–2214CrossRefGoogle Scholar
  5. 5.
    Varma P, Lofgren EA, Jabarin SA (1998) Properties and kinetics of thermally crystallized orientated poly(ethylene terephthalate) (PET) I: kinetics of crystallization. Polym Eng Sci 38:237–244CrossRefGoogle Scholar
  6. 6.
    Hanemann T, Szabó DV (2010) Polymer-nanoparticle composites: from synthesis to modern applications. Materials 3:3468–3517CrossRefGoogle Scholar
  7. 7.
    Vaia RA, Wagner HD (2004) Framework for nanocomposites. Mater Today 7:32–37CrossRefGoogle Scholar
  8. 8.
    Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641CrossRefGoogle Scholar
  9. 9.
    Carrado KA (2003) Polymer-clay nanocomposites. In: Shonaike GO, Advani SG (eds) Advanced polymeric materials: structure property relationships. CRC Press, Boca Raton, pp 349–396Google Scholar
  10. 10.
    Mishra R, Tripathy SP, Sinha D, Dwivedi KK, Ghosh S, Khathing DT, Muller M, Fink D, Chung WH (2000) Optical and electrical properties of some electron and proton irradiated polymers. Nucl Instrum Methods B 168:59–64CrossRefGoogle Scholar
  11. 11.
    Bridwell LB, Giedd RE, Wang YQ, Mohite SS, Jahnke T (1991) Ion implantation of polymers for electrical conductivity enhancement. Nucl Instrum Methods B 56(57):656–659CrossRefGoogle Scholar
  12. 12.
    Keiji U, Yasuyo M, Nobuyuki N, Mitsuru N, Mamoru S (1991) Effects of high-energy (MeV) ion implantation of polyester films. Nucl Instrum Methods B 59(60):1263–1266CrossRefGoogle Scholar
  13. 13.
    Singh NL, Shah N, Desai CF, Singhb KP, Arora SK (2004) Modification of polyethylene terephthalate by proton irradiation. Radiat Eff Defect Solids 159:475–482CrossRefGoogle Scholar
  14. 14.
    Singh NL, Shah N, Singh KP, Desai CF (2005) Electrical and thermal behavior of proton irradiated polymeric blends. Radiat Meas 40:741–745CrossRefGoogle Scholar
  15. 15.
    Fink D (2004) Springer series in material science: fundamentals of ion-irradiated polymers. Springer, Berlin HeidelbergCrossRefGoogle Scholar
  16. 16.
    Cury Camargo PH, Gundappa Satyanarayana K, Wypych F (2009) Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res 12:1–39CrossRefGoogle Scholar
  17. 17.
    Kim JY, Kim SH (2012) High performance PET/carbon nanotube nanocomposites: preparation, characterization, properties and applications. In: Ebrahimi F (ed) Nanocomposites—new trends and developments. InTech, Chapter 5Google Scholar
  18. 18.
    Tzavalas S, Mouzakis DE, Drakonakis V, Gregoriou VG (2008) Polyethylene terephthalate–multiwall nanotubes nanocomposites: effect of nanotubes on the conformations, crystallinity and crystallization behavior of PET. J Polym Sci Part B 46:668–676CrossRefGoogle Scholar
  19. 19.
    Liu Y, Kumar S (2014) Polymer/carbon nanotube nano composite fibers—a review. Appl Mater Interfaces 6:6069–6087CrossRefGoogle Scholar
  20. 20.
    Wang C, Guo ZX, Fu S, Wu W, Zhu D (2004) Polymers containing fullerene or carbon nanotube structures. Prog Polym Sci 29:1079–1141CrossRefGoogle Scholar
  21. 21.
    Mochalin VN, Shenderova O, Ho D, Gogotsi Y (2012) The properties and applications of nanodiamonds. Nat Nanotechnol 7:11–23CrossRefGoogle Scholar
  22. 22.
    Borjanovic V, Bistricic L, Mikac L, McGuire GE, Zamboni I, Jaksic M, Shenderova O (2012) Poymer nanocomposites with improved resistance to ionizing radiation. J Vac Sci Technol, B 30:1023–1071CrossRefGoogle Scholar
  23. 23.
    Borjanovic V, Bistricic L, Vlasov I, Furic K, Zamboni I, Jaksic M, Shenderova O (2009) Influence of proton irradiation on the structure and stability of poly(dimethylsiloxane) and poly(dimethylsiloxane)-nanodiamond composite. J Vac Sci Technol, B 27:2396–2403CrossRefGoogle Scholar
  24. 24.
    Borjanovic V, Lawrence WG, Hens S, Jaksic M, Zamboni I, Edson C, Vlasov I, Shenderova O, McGuire GE (2008) Effect of proton irradiation on photoluminescent properties of PDMS-nanodiamond composites. Nanotechnology 19:455701. doi: 10.1088/0957-4484/19/45/455701 CrossRefGoogle Scholar
  25. 25.
    Borjanovic V, Shenderova O, McGuire GE (2013) Polymer nanocomposites with improved resistance to ionizing radiation, U.S. Patent No. 8, 475, 879Google Scholar
  26. 26.
    Galpaya D, Wang M, Liu M, Motta N, Waclawik E, Yan C (2012) Recent advances in fabrication and characterization of graphene-polymer nanocomposites. Graphene 1:30–49CrossRefGoogle Scholar
  27. 27.
    Das TK, Prusty S (2013) Graphene-based polymer composites and their applications. Polym Plast Technol 52:319–331CrossRefGoogle Scholar
  28. 28.
    Zhang HB, Zheng WG, Yana Q, Yang Y, Wang JW, Lu ZH, Ji GY, Yu ZZ (2010) Electrically conductive polyethylene terephthalate-graphene nanocomposites prepared by melt compounding. Polymer 51:1191–1196CrossRefGoogle Scholar
  29. 29.
    Prasad KE, Das B, Maitra U, Upadrasta Ramamurty U, Rao CNR (2009) Extraordinary synergy in the mechanical properties of polymer matrix composites reinforced with 2 nanocarbons. Proc Natl Acad Sci USA 106:13186–13189CrossRefGoogle Scholar
  30. 30.
    Shenderova S, Koscheev A, Zaripov N, Petrov I, Skryabin Y, Detkov P, Turner S, Van Tendeloo G (2011) Surface chemistry and properties of ozone-purified detonation nanodiamonds. J Phys Chem C 115:9827–9837CrossRefGoogle Scholar
  31. 31.
    Chen Z, Hay JN, Jenkins MJ (2013) The thermal analysis of poly(ethylene terephthalate) by FTIR spectroscopy. Thermochim Acta 552:123–130CrossRefGoogle Scholar
  32. 32.
    Chen Z, Hay JN, Jenkins MJ (2012) FTIR spectroscopic analysis of poly(ethylene terephthalate) on crystallization. Eur Polym J 48:1586–1610CrossRefGoogle Scholar
  33. 33.
    Bertoldo M, Massimiliano Labardi M, Rotella C, Capaccioli S (2010) Enhanced crystallization kinetics in poly(ethylene terephthalate) thin films evidenced by infrared spectroscopy. Polymer 51:3660–3668CrossRefGoogle Scholar
  34. 34.
    Rastogi R, Vellinga WP, Rastogi S, Schick C, Meijer HEH (2004) The three-phase structure and mechanical properties of poly(ethylene terephthalate). J Polym Sci Pol Phys 42:2092–2106CrossRefGoogle Scholar
  35. 35.
    Cunningham A, Ward MI, Willis H, Zichy V (1974) An infra-red spectroscopic study of molecular orientation and conformational changes in poly(ethyleneterephthalate). Polymer 15:749–756CrossRefGoogle Scholar
  36. 36.
    Schmidt PG (1963) Polyethylene terephthalate structural studies. J Polym Sci Part A 1:1271–1292Google Scholar
  37. 37.
    Jabarin SA (1982) Optical properties of thermally crystallized poly(ethylene terephthalate). Polym Eng Sci 22:815–820CrossRefGoogle Scholar
  38. 38.
    Cole KC, Ajji A, Pellerin E (2002) New insights into the development of ordered structure in poly(ethylene terephthalate)—1. Results from external reflection infrared spectroscopy. Macromolecules 35:770–784CrossRefGoogle Scholar
  39. 39.
    Kirov KR, Assender HE (2005) Quantitative ATR-IR analysis of anisotropic polymer films: surface structure of commercial PET. Macromolecules 38:9258–9265CrossRefGoogle Scholar
  40. 40.
    Moeller HW (2008) Progress in polymer degradation and stability research. Nova Science Publishers, Inc, New YorkGoogle Scholar
  41. 41.
    Quaranta A, Vomiero A, Cartura S, Maggioni G, Mea GD (2002) Polymer film degradation under ion irradiation studied by ion beam induced luminescence (IBIL) and optical analyses. Nucl Instr Methods B 191:680–684CrossRefGoogle Scholar
  42. 42.
    Bistricic L, Borjanovic V, Leskovac M, Mikac L, McGuire GE, Shenderova O, Nunn N (2015) Raman spectra, thermal and mechanical properties of poly(ethylene terephthalate) carbon based nanocomposite films. J Polym Res 22:39CrossRefGoogle Scholar
  43. 43.
    Zhu P, Ma D (1997) Double cold crystallization peaks of poly(ethylene terephthalate)—1. Samples isothermally crystallized at low temperature. Eur Polym J 33:1817–1818CrossRefGoogle Scholar
  44. 44.
    Androsch R, Wunderlich B (2005) The link between rigid amorphous fraction and crystal perfection in cold-crystallized poly(ethylene terephthalate). Polymer 46:12556–12566CrossRefGoogle Scholar
  45. 45.
    Tzavalas S, Drakonakis V, Mouzakis DE, Fischer D, Gregoriou VG (2006) Effect of carboxy-functionalized multiwall nanotubes (MWNT-COOH) on the crystallization and chain conformations of poly(ethylene terephthalate) PET in PET-MWNT nanocomposites. Macromolecules 39:9150–9156CrossRefGoogle Scholar
  46. 46.
    Righetti MC, Laus M, Di Lorenzo ML (2014) Rigid amorphous fraction and melting behavior of poly(ethylene terephthalate). Colloid Polym Sci 292:1365–1374CrossRefGoogle Scholar
  47. 47.
    Bikiaris D, Vassilis K, Karayannidis G (2006) A new approach to prepare poly(ethylene terephthalate)/silica nanocomposites with increased molecular weight and fully adjustable branching or crosslinking by SSP. Macromol Rapid Commun 27:1199–1205CrossRefGoogle Scholar
  48. 48.
    Anoop Anand K, Agarwal US, Rani J (2006) Carbon nanotubes induced crystallization of poly(ethylene terephthalate). Polymer 47:3976–3980CrossRefGoogle Scholar
  49. 49.
    Biswas A, Lotha S, Fink D, Singh JP, Avasthi DK, Yadav BK, Bose SK, Khating DT, Avasthi AM (1999) The effects of swift heavy ion irradiation on the radiochemistry and melting characteristics of PET. Nucl Instr Methods B 159:40–51CrossRefGoogle Scholar
  50. 50.
    Papaleo RM, de Araujo MA, Livi RP (1992) Study of the ion beam induced amorphisation, bond breaking and optical gap change processes in PET. Nucl Instr Methods B 65:442–446CrossRefGoogle Scholar
  51. 51.
    Liu C, Jin Y, Sun Y, Hou M, Wang Z, Chen X, Zhang C, Liu J, Liu B, Wang Y (2000) Chemical modifications in polyethylene terephthalate films induced by 35 MeV/u Ar ions. Nucl Instr Methods B 166(167):641–645CrossRefGoogle Scholar
  52. 52.
    Nagata S, Takahiro K, Tsuchiya B, Shikama T (2009) Ion beam induced luminescence of polyethylene terephthalate foils under MeV H and He ion bombardment. Nucl Instr Methods B 267:1553–1556CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • V. Borjanović
    • 1
    • 2
    Email author
  • L. Bistričić
    • 1
  • I. Pucić
    • 3
  • L. Mikac
    • 3
  • R. Slunjski
    • 3
  • M. Jakšić
    • 3
  • G. McGuire
    • 2
  • A. Tomas Stanković
    • 4
  • O. Shenderova
    • 2
  1. 1.Faculty of Electrical Engineering and ComputingUniversity of ZagrebZagrebCroatia
  2. 2.International Technology CenterRaleighUSA
  3. 3.Ruđer Bošković InstituteZagrebCroatia
  4. 4.Energy Institute Hrvoje PožarZagrebCroatia

Personalised recommendations