Skip to main content
Log in

Solvothermal synthesis in ethylene glycol and catalytic activity for CO oxidation of CuO/CeO2 catalysts

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A series of supported CuO/CeO2 catalysts with various CuO loadings (5–25 wt%) were prepared using a solvothermal method with ethylene glycol as solvent. The effects of CuO loading on physicochemical properties and catalytic activity of the prepared CuO/CeO2 catalysts have been investigated by X-ray diffraction, Raman spectroscopy, BET surface area measurement, X-ray photoelectron spectroscopy, temperature-programmed reduction with H2, temperature-programmed desorption of CO techniques, and low-temperature CO oxidation reaction test. The results indicate that the catalyst with 10 wt% CuO loading has the highest catalytic activity, which can be attributed to the largest amounts of well-dispersed CuO species strongly interacting with support CeO2 and oxygen vacancies caused by the incorporation of Cu2+ into CeO2 lattice, and the highest concentration of and the most active lattice oxygen. The activity for CO oxidation of the supported CuO/CeO2 catalyst prepared by the present solvothermal method was significantly higher than that of the counterparts prepared by the commonly used impregnation and deposition–precipitation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kang M, Song MW, Lee CH (2003) Catalytic carbon monoxide oxidation over CoOx/CeO2 composite catalysts. Appl Catal A 251:143–156

    Article  Google Scholar 

  2. Liotta LF, Macaluso A, Longo A et al (2003) Effects of redox treatments on the structural composition of a ceria–zirconia oxide for application in the three-way catalysis. Appl Catal A 240:295–307

    Article  Google Scholar 

  3. Tang X, Zhang B, Li Y et al (2005) CuO/CeO2 catalysts: redox features and catalytic behaviors. Appl Catal A 288:116–125

    Article  Google Scholar 

  4. Zimmer P, Tschöpe A, Birringer R (2002) Temperature-programmed reaction spectroscopy of ceria- and Cu/ceria-supported oxide catalyst. J Catal 205:339–345

    Article  Google Scholar 

  5. Liu W, Flytzanistephanopoulos M (1995) Total oxidation of carbon monoxide and methane over transition metal fluorite oxide composite catalysts: I. Catalyst composition and activity. J Catal 153:304–316

    Article  Google Scholar 

  6. Tschöpe A, Schaadt D, Birringer R et al (1997) Catalytic properties of nanostructured metal oxides synthesized by inert gas condensation. Nanostruct Mater 9:423–432

    Article  Google Scholar 

  7. Qi L, Yu Q, Dai Y et al (2012) Influence of cerium precursors on the structure and reducibility of mesoporous CuO-CeO2 catalysts for CO oxidation. Appl Catal B 119–120:308–320

    Article  Google Scholar 

  8. Jiang XY, Lu GL, Zhou RX et al (2001) Studies of pore structure, temperature-programmed reduction performance, and micro-structure of CuO/CeO2 catalysts. Appl Surf Sci 173:208–220

    Article  Google Scholar 

  9. Luo MF, Zhong YJ, Yuan XX et al (1997) TPR and TPD studies of CuO/CeO2 catalysts for low temperature CO oxidation. Appl Catal A 162:121–131

    Article  Google Scholar 

  10. Liu W, Flytzani-Stephanopoulos M (1996) Transition metal-promoted oxidation catalysis by fluorite oxides: a study of CO oxidation over Cu/CeO2. Chem Eng J 64:283–294

    Google Scholar 

  11. Sedmak G, Hočevar S, Levec J (2004) Transient kinetic model of CO oxidation over a nanostructured Cu0.1Ce0.9O2−y catalyst. J Catal 222:87–99

    Article  Google Scholar 

  12. Jia AP, Hu GS, Meng L et al (2012) CO oxidation over CuO/Ce1−xCuxO2−δ and Ce1−xCuxO2−δ catalysts: synergetic effects and kinetic study. J Catal 289:199–209

    Article  Google Scholar 

  13. Dow WP, Wang YP, Huang TJ (2000) TPR and XRD studies of yttria-doped ceria/γ-alumina-supported copper oxide catalyst. Appl Catal A 190:25–34

    Article  Google Scholar 

  14. Avgouropoulos G, Ioannides T, Matralis H (2005) Influence of the preparation method on the performance of CuO–CeO2 catalysts for the selective oxidation of CO. Appl Catal B 56:87–93

    Article  Google Scholar 

  15. Gamarra D, Munuera G, Hungría AB et al (2007) Structure − activity relationship in nanostructured copper − ceria-based preferential CO oxidation catalysts. J Phys Chem C 111:11026–11038

    Article  Google Scholar 

  16. Sirichaiprasert K, Luengnaruemitchai A, Pongstabodee S (2007) Selective oxidation of CO over Cu–Ce–Fe–O composite oxide catalyst in hydrogen feed stream. Int J Hydrog Energy 32:915–926

    Article  Google Scholar 

  17. Liu Z, Zhou R, Zheng X (2008) Influence of preparation methods on CuO-CeO2 catalysts in the preferential oxidation of CO in excess hydrogen. J Nat Gas Chem 17:125–129

    Article  Google Scholar 

  18. Liu Z, Yang S, Zhou R et al (2010) Influence of pH values in the preparation of CuO-CeO2 on its catalytic performance for the preferential oxidation of CO in excess hydrogen. J Nat Gas Chem 19:313–317

    Article  Google Scholar 

  19. Zheng XC, Wu SH, Wang SP et al (2005) The preparation and catalytic behavior of copper–cerium oxide catalysts for low-temperature carbon monoxide oxidation. Appl Catal A 283:217–223

    Article  Google Scholar 

  20. Tang X, Zhang B, Li Y et al (2004) Carbon monoxide oxidation over CuO/CeO2 catalysts. Catal Today 93–95:191–198

    Article  Google Scholar 

  21. Zhu J, Gao Q, Chen Z (2008) Preparation of mesoporous copper cerium bimetal oxides with high performance for catalytic oxidation of carbon monoxide. Appl Catal B 81:236–243

    Article  Google Scholar 

  22. Luo MF, Song YP, Lu JQ et al (2007) Identification of CuO species in high surface area CuO − CeO2 catalysts and their catalytic activities for CO oxidation. J Phys Chem C 111:12686–12692

    Article  Google Scholar 

  23. Kydd R, Teoh WY, Wong K et al (2009) Flame-synthesized ceria-supported copper dimers for preferential oxidation of CO. Adv Funct Mater 19:369–377

    Article  Google Scholar 

  24. Pimentel A, Rodrigues J, Duarte P et al (2015) Effect of solvents on ZnO nanostructures synthesized by solvothermal method assisted by microwave radiation: a photocatalytic study. J Mater Sci 50:5777–5787. doi:10.1007/s10853-015-9125-7

    Article  Google Scholar 

  25. Zeng SH, Liu KW, Chen TJ et al (2013) Influence of crystallite size and interface on the catalytic performance over the CeO2/CuO catalysts. Int J Hydrog Energy 38:14542–14549

    Article  Google Scholar 

  26. Mrabet D, Abassi A, Cherizol R et al (2012) One-pot solvothermal synthesis of mixed Cu-Ce-Ox nanocatalysts and their catalytic activity for low temperature CO oxidation. Appl Catal A 447–448:60–66

    Article  Google Scholar 

  27. Cao JL, Wang Y, Zhang TY et al (2008) Preparation, characterization and catalytic behavior of nanostructured mesoporous CuO/Ce0.8Zr0.2O2 catalysts for low-temperature CO oxidation. Appl Catal B 78:120–128

    Article  Google Scholar 

  28. Fernández-García M, Martínez-Arias A, Iglesias-Juez A et al (2000) Structural characteristics and redox behavior of CeO2-ZrO2/Al2O3 supports. J Catal 194:385–392

    Article  Google Scholar 

  29. Gnanakumar ES, Naik JM, Manikandan M et al (2014) Role of nanointerfaces in Cu- and Cu + Au- based near-ambient-temperature CO oxidation catalysts. ChemCatChem 6:3116–3124

    Article  Google Scholar 

  30. Li J, Zhu P, Zuo S et al (2010) Influence of Mn doping on the performance of CuO-CeO2 catalysts for selective oxidation of CO in hydrogen-rich streams. Appl Catal A 381:261–266

    Article  Google Scholar 

  31. Zou H, Chen S, Liu Z et al (2011) Selective CO oxidation over CuO-CeO2 catalysts doped with transition metal oxides. Powder Technol 207:238–244

    Article  Google Scholar 

  32. Reddy LH, Reddy GK, Devaiah D et al (2012) A rapid microwave-assisted solution combustion synthesis of CuO promoted CeO2-MxOy (M = Zr, La, Pr and Sm) catalysts for CO oxidation. Appl Catal A 445–446:297–305

    Article  Google Scholar 

  33. Cai W, Chen F, Shen X et al (2010) Enhanced catalytic degradation of AO7 in the CeO2–H2O2 system with Fe3+ doping. Appl Catal B 101:160–168

    Article  Google Scholar 

  34. Cao JL, Shao GS, Ma TY et al (2009) Hierarchical meso–macroporous titania-supported CuO nanocatalysts: preparation, characterization and catalytic CO oxidation. J Mater Sci 44:6717–6726. doi:10.1007/s10853-009-3583-8

    Article  Google Scholar 

  35. Kundakovic L, Flytzani-Stephanopoulos M (1998) Reduction characteristics of copper oxide in cerium and zirconium oxide systems. Appl Catal A 171:13–29

    Article  Google Scholar 

  36. Zhu H, Shen M, Kong Y et al (2004) Characterization of copper oxide supported on ceria-modified anatase. J Mol Catal A 219:155–164

    Article  Google Scholar 

  37. Avgouropoulos G, Ioannides T (2006) Effect of synthesis parameters on catalytic properties of CuO-CeO2. Appl Catal B 67:1–11

    Article  Google Scholar 

  38. Wang SP, Zheng XC, Wang XY et al (2005) Comparison of CuO/Ce0.8Zr0.2O2 and CuO/CeO2 catalysts for low-temperature CO oxidation. Catal Lett 105:163–168

    Article  Google Scholar 

  39. He C, Yu Y, Yue L et al (2014) Low-temperature removal of toluene and propanal over highly active mesoporous CuCeOx catalysts synthesized via a simple self-precipitation protocol. Appl Catal B 147:156–166

    Article  Google Scholar 

  40. Sun SS, Mao DS, Yu J et al (2015) Low-temperature CO oxidation on CuO/CeO2 catalysts: the significant effect of copper precursor and calcination temperature. Catal Sci Technol 5:3166–3181

    Article  Google Scholar 

  41. Yen H, Seo Y, Kaliaguine S et al (2012) Tailored mesostructured copper/ceria catalysts with enhanced performance for preferential oxidation of CO at low temperature. Angew Chem Int Ed 51:12032–12035

    Article  Google Scholar 

  42. Zou H, Dong X, Lin W (2006) Selective CO oxidation in hydrogen-rich gas over CuO/CeO2 catalysts. Appl Surf Sci 253:2893–2898

    Article  Google Scholar 

  43. Moretti E, Storaro L, Talon A et al (2011) Effect of thermal treatments on the catalytic behaviour in the CO preferential oxidation of a CuO–CeO2–ZrO2 catalyst with a flower-like morphology. Appl Catal B 102:627–637

    Article  Google Scholar 

  44. Caputo T, Lisi L, Pirone R et al (2008) On the role of redox properties of CuO/CeO2 catalysts in the preferential oxidation of CO in H2-rich gases. Appl Catal A 348:42–53

    Article  Google Scholar 

  45. Martínez-Arias A, Fernández-García M, Gálvez O et al (2000) Comparative study on redox properties and catalytic behavior for CO oxidation of CuO/CeO2 and CuO/ZrCeO4 catalysts. J Catal 195:207–216

    Article  Google Scholar 

  46. Liu W, Flytzanistephanopoulos M (1995) Total oxidation of carbon monoxide and methane over transition metal fluorite oxide composite catalysts: II. Catalyst characterization and reaction kinetics. J Catal 153:317–332

    Article  Google Scholar 

  47. Cao JL, Deng QF, Yuan ZY (2009) Mesoporous Ce0.8Zr0.2O2 solid solutions-supported CuO nanocatalysts for CO oxidation: a comparative study of preparation methods. J Mater Sci 44:6663–6669. doi:10.1007/s10853-009-3582-9

    Article  Google Scholar 

  48. Fu GY, Mao DS, Sun SS et al (2015) Preparation, characterization and CO oxidation activity of Cu-Ce-Zr mixed oxide catalysts via facile dry oxalate-precursor synthesis. J Ind Eng Chem 31:283–290

    Article  Google Scholar 

  49. Liu Y, Wen C, Guo Y et al (2010) Modulated CO oxidation activity of M-doped ceria (M = Cu, Ti, Zr, and Tb): role of the pauling electronegativity of M. J Phys Chem C 114:9889–9897

    Article  Google Scholar 

  50. Li J, Han Y, Zhu Y et al (2011) Purification of hydrogen from carbon monoxide for fuel cell application over modified mesoporous CuO–CeO2 catalysts. Appl Catal B 108–109:72–80

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21273150) and the ‘‘ShuGuang’’ Project (10GG23) of Shanghai Municipal Education Commission and Shanghai Education Development Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Sen Mao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, YL., Mao, DS., Sun, SS. et al. Solvothermal synthesis in ethylene glycol and catalytic activity for CO oxidation of CuO/CeO2 catalysts. J Mater Sci 51, 917–925 (2016). https://doi.org/10.1007/s10853-015-9420-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9420-3

Keywords

Navigation