Skip to main content
Log in

Electrical conductivity of metal powder aggregates and sintered compacts

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

New equations for computing the electrical conductivity of powder aggregates and sintered compacts are proposed. In both cases, the effective or apparent conductivity is a function of the bulk material conductivity, the porosity of the sample and the tap porosity of the starting powder. Additional parameters are required for powder aggregates, such as the conductivity of the oxide covering the particles, the thickness of the oxide layers and the ease of descaling them. The new equations are valid from zero porosity to the tap porosity. Links between the equations and the percolation conduction theory are stated. Measurements of electrical resistance on sintered compacts and powder aggregates subjected to different pressures were performed. The proposed equations have been validated with these data. The electrical conductivity of both sintered compacts and powder aggregates of aluminium, bronze, iron and nickel was determined and compared to the equation predictions, resulting in notably good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Simchi A, Danninger H (2002) Microstructural changes in Mo steels during sintering and effect on electrical conductivity. Powder Metall 45:307–314

    Article  Google Scholar 

  2. Schulz B (1981) Thermal conductivity of porous and highly porous materials. High Temp-High Press 13:649–660

    Google Scholar 

  3. Slesar M, Dudrova E, Rudnoyova E (1992) Plain porosity as a microstructural characteristic of sintered materials. Powder Metall Int 24:232–236

    Google Scholar 

  4. Simchi A, Danninger H (2000) Electrical conductivity and microstructure of sintered ferrous materials: sintered iron. Powder Metall 43:209–218

    Article  Google Scholar 

  5. Montes JM, Rodríguez JA, Cuevas FG, Cintas J (2011) Consolidation by electrical resistance sintering of Ti powder. J Mater Sci 46:5197–5207. doi:10.1007/s10853-011-5456-1

    Article  Google Scholar 

  6. Maxwell JC (1998) A treatise on electricity and magnetism. Dover Publications Inc., New York

    Google Scholar 

  7. Fricke H (1924) A mathematical treatment of the electric conductivity and capacity of dispersed systems. J Phys Rev 24:575–587

    Article  Google Scholar 

  8. Loeb AL (1954) Thermal conductivity: III, a theory of thermal conductivity of porous materials. J Am Ceram Soc 37(2):96–99

    Article  Google Scholar 

  9. Murabayashi M, Takahashi Y, Mukaibo T (1969) Effect of porosity on the thermal conductivity of ThO2. J Nucl Sci Technol 6(11):657–662

    Article  Google Scholar 

  10. Aivazov MI, Domashnev IA (1968) Influence of porosity on the conductivity of hot-pressed titaniumnitride specimens. Poroshk Metall 9(69):51–54

    Google Scholar 

  11. Meyer R (1972) The measurement of electrical resistivity to characterize a sintered product. Powder Metall Int 4(2):63–67

    Google Scholar 

  12. McLachlan DS (1986) Equation for the conductivity of metal–insulator mixtures. J Phys C 19:1339–1345

    Article  Google Scholar 

  13. Montes JM, Rodríguez JA, Herrera EJ (2003) Thermal and electrical conductivities of sintered powder compacts. Powder Metall 46(3):251–256

    Article  Google Scholar 

  14. Montes JM, Cuevas FG, Cintas J (2008) Porosity effect on the electrical conductivity of sintered powder compacts. Appl Phys A 92:375–380

    Article  Google Scholar 

  15. Torre C (1948) Theory and behaviour of pressed powders. Berg-und Hüttenmännische Monatshefte 93:62–67

    Google Scholar 

  16. Skorokhod VV, Martynova IF (1977) Irreversible deformation of a sintered porous body of work-hardening plastic metal. Poroshk Metall 4:70–74

    Google Scholar 

  17. Segal VM, Reznikov VI, Malyshev VI (1979) Consolidation of powdered materials during hydrostatic loading. Solov’ev Poroshk Metall 6:26–30

    Google Scholar 

  18. Garino TJ (2002) Electrical behavior of oxidized metal powders during and after compaction. J Mater Res 17(10):2691–2697

    Article  Google Scholar 

  19. Lefebvre LP, Pleizier G, Deslandes Y (2001) Electrical resistivity of green powder compacts. Powder Metall 44(3):259–266

    Article  Google Scholar 

  20. Efros AL (1985) Physics and geometry of disorder percolation theory. MIR, Moscow

    Google Scholar 

  21. Torquato S (2009) Random heterogeneous materials: microstructure and macroscopic properties. Springer, New York

    Google Scholar 

  22. Sahimi M (2003) Heterogeneous materials I. Springer, New York

    Google Scholar 

  23. Montes JM, Cuevas FG, Cintas J, Urban P (2011) Electrical conductivity of metal powders under pressure. Appl Phys A 105:935–947

    Article  Google Scholar 

  24. MPIF Standard 46 (2002) Determination of tap density of metal powders. MPIF, Princeton

    Google Scholar 

  25. Cytermann R (1987) New way to investigate the dependence of elastic moduli on the microstructure of porous materials. Powder Metall Int 19:27–30

    Google Scholar 

  26. Montes JM, Cuevas FG, Cintas J (2005) Effective area in powder compacts under uniaxial compression. Mat Sci Eng A 395:208–213

    Article  Google Scholar 

  27. Ondracek G (1983) Key position of stereology in quantitative microstructure-correlations of multiphase materials. Sci Sinter 15:91–99

    Google Scholar 

  28. Montes JM, Cintas J, Rodríguez JA, Herrera EJ (2003) Effective pressure on powders under uniaxial compression. J Mater Sci Lett 22:1669–1671

    Article  Google Scholar 

  29. Montes JM, Cuevas FG, Cintas J (2006) A new expression for the effective pressure on powders under compression. Comput Mater Sci 36:329–337

    Article  Google Scholar 

  30. Montes JM, Cuevas FG, Cintas J, Rodríguez JA, Herrera EJ (2005) The equivalent simple cubic system in trends. Materials science research. Nova Publishers, New York, pp 157–190

    Google Scholar 

  31. Montes JM, Cuevas FG, Cintas J (2007) Electrical and thermal tortuosity in powder compacts. Granular Matter 9:401–406

    Article  Google Scholar 

  32. Stauffer D, Aharony A (1994) Introduction to percolation theory. Taylor and Francis, London

    Google Scholar 

  33. de Gennes PG, Pincus P, Velasco RM, Brochard F (1976) Remarks on polyelectrolyte conformation. J Phys (Paris) 37:1461–1473

    Article  Google Scholar 

  34. German RM (1989) Particle packing characteristics. MPIF, Princeton

    Google Scholar 

  35. Euler KJ (1978) The conductivity of compressed powders. A review. J Power Sources 3:117–136

    Article  Google Scholar 

  36. Cintas J, Montes JM, Cuevas FG, Herrera EJ (2005) Influence of milling media on the microstructure and mechanical properties of mechanically milled and sintered aluminium. J Mater Sci 40:3911–3915. doi:10.1007/s10853-005-0756-y

    Article  Google Scholar 

  37. MPIF Standard 45 (2002) Determination of compressibility of metal powders. MPIF, Princeton

    Google Scholar 

  38. Webster GJ (1999) The measurement, instrumentation and sensors handbook. CRC Press-Springer, Boca Raton

    Google Scholar 

  39. Brandes EA (ed) (1983) Smithells metals reference book, 6th edn. Butterworths, Oxford

    Google Scholar 

  40. Kingery WD, Bowen HK, Uhlmann DR (1976) Introduction to ceramics, 2nd edn. Wiley, Hoboken

    Google Scholar 

  41. Tsuda N, Nasu K, Fujimori A, Siratori K (2000) Electronic conduction in oxides, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  42. Akl AA (2004) Optical properties of crystalline and non-crystalline iron oxide thin films deposited by spray pyrolysis. Appl Surf Sci 221:319–329

    Article  Google Scholar 

  43. Guziewicz M, Grochowski J, Borysiewicz M, Kaminska E, Domagala JZ, Rzodkiewicz W, Witkowski BS, Golaszewska K, Kruszka R, Ekielski M, Piotrowska A (2011) Electrical and optical properties of NiO films deposited by magnetron sputtering. Opt Appl XLI 2:431–440

    Google Scholar 

  44. Evans UR (1968) The corrosion and oxidation of metals: first supplementary volume. Edward Arnold, London

    Google Scholar 

  45. Li WT, McKenzie DR, McFall WD, Zhang QCH, Wiszniewski W (2000) Breakdown mechanism of Al2O3 based metal-to-metal antifuses. Solid State Electron 44:1557–1562

    Article  Google Scholar 

  46. Drobny VF, Pulfrey DL (1979) Properties of reactively-sputtered copper oxide thin films. Thin Solid Films 61:89–98

    Article  Google Scholar 

  47. Argento C, Bouvard D (1996) Modelling the effective thermal conductivity of random packing of spheres through densification. Int J Heat Mass Transfer 39(7):1343–1350

    Article  Google Scholar 

  48. Huntz AM, Andrieux M, Molins R (2006) Relation between the oxidation mechanism of nickel, the microstructure and mechanical resistance of NiO films and the nickel purity. II. Mechanical resistance of NiO films. Mater Sci Eng A 417:8–15

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to FEDER/MCyT, Madrid, for funding this research within the framework of Project DPI2012-37948-C02-01. The authors also wish to thank the technicians J. Pinto, M. Madrid and M. Sanchez for experimental assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Montes.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montes, J.M., Cuevas, F.G., Cintas, J. et al. Electrical conductivity of metal powder aggregates and sintered compacts. J Mater Sci 51, 822–835 (2016). https://doi.org/10.1007/s10853-015-9405-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9405-2

Keywords

Navigation