Skip to main content
Log in

Ag2S and MoS2 as dual, co-catalysts for enhanced photocatalytic degradation of organic pollutions over CdS

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

CdS photocatalysts loaded with Ag2S and MoS2 as dual co-catalysts were prepared via a one-step in situ hydrothermal method using CdCl2·2.5H2O, H2MoO4, AgNO3·9H2O, and CS(NH2)2 as the raw materials. The as-prepared photocatalysts were characterized by X-ray diffraction, scanning electron microscopy, transmission electron micrograph, X-ray photoelectron spectroscopy, photoluminescence spectra, and Ultraviolet–Visible diffuse reflectance spectroscopy (UV–Vis DRS). The highest photocatalytic degradation rate was achieved for Ag2S/MoS2/CdS composites (87 %) compared to MoS2/CdS composites (66 %) and CdS (62 %) under visible light illumination for 60 min. The recycled photocatalytic experiments showed that the photocatalytic stability of CdS was improved with the introduction of Ag2S and MoS2. The improved photocatalytic performance of Ag2S/MoS2/CdS composites can be ascribed to the red shift of absorption edge, enhanced light absorption intensity, and the increased separation of the photoinduced electron–hole pairs, which was attributed to the synergetic effect of MoS2 and Ag2S on CdS. It was proven that Ag2S and MoS2 can act as effective dual co-catalysts to enhance the photocatalytic degradation activity of CdS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yang MQ, Zhang N, Pagliaro M et al (2014) Artificial photosynthesis over graphene-semiconductor composites. Are we getting better? Chem Soc Rev 43:8240–8254

    Article  Google Scholar 

  2. Zhang N, Zhang YH, Xu YJ (2012) Recent progress on graphene-based photocatalysts: current status and future perspectives. Nanoscale 4:5792–5813

    Article  Google Scholar 

  3. Han C, Yang MQ, Xu YJ et al (2014) Improving the photocatalytic activity and anti-photocorrosion of semiconductor ZnO by coupling with versatile carbon. Phys Chem Chem Phys 16:16891–16903

    Article  Google Scholar 

  4. Zhang YH, Tang ZR, Xu YJ et al (2010) TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2-carbon composite materials? ACS Nano 4:7303–7314

    Article  Google Scholar 

  5. Wang HL, Zhang LS, Chen ZG et al (2014) Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem Soc Rev 43:5234–5244

    Article  Google Scholar 

  6. Li Z, Yu LB, Liu YB et al (2014) Enhanced photovoltaic performance of solar cell based on front-side illuminated CdSe/CdS double-sensitized TiO2 nanotube arrays electrode. J Mater Sci 49:6392–6403. doi:10.1007/s10853-014-8366-1

    Article  Google Scholar 

  7. Sun MX, Li WB, Sun SF et al (2015) One-step in situ synthesis of graphene-TiO2 nanorod hybrid composites with enhanced photocatalytic activity. Mater Res Bull 61:280–286

    Article  Google Scholar 

  8. Han SC, Hu LF, Fang XS et al (2014) Efficient self-assembly synthesis of uniform CdS spherical nanoparticles-Au nanoparticles hybrids with enhanced photoactivity. Adv Funct Mater 24:3725–3733

    Article  Google Scholar 

  9. Liu S, Yang MQ, Tang ZR et al (2014) A nanotree-like CdS/ZnO nanocomposite with spatially branched hierarchical structure for photocatalytic fine-chemical synthesis. Nanoscale 6:7193–7198

    Article  Google Scholar 

  10. Zong X, Wu GP, Li C et al (2010) Photocatalytic H2 evolution on MoS2/CdS catalysts under visible light irradiation. J Phys Chem C 14:1963–1968

    Article  Google Scholar 

  11. Fang XS, Wu LM, Hu LF (2011) ZnS nanostructure arrays: a developing material star. Adv Mater 23:585–598

    Article  Google Scholar 

  12. Li Y, Chen G, Zhou C et al (2009) A simple template-free synthesis of nanoporous ZnS-In2S3-Ag2S solid solutions for highly efficient photocatalytic H2 evolution under visible light. Chem Commun 15:2020–2022

    Article  Google Scholar 

  13. Gao P, Liu J, Sun DD et al (2012) High quality graphene oxide-CdS-Pt nanocomposites for efficient photocatalytic hydrogen evolution. J Mater Chem 22(5):2292–2298

    Article  Google Scholar 

  14. Guo YM, Wang L, Ma XM et al (2011) Optical and photocatalytic properties of arginine-stabilized cadmium sulfide quantum dots. Mater Lett 65(3):486–489

    Article  Google Scholar 

  15. Wu CC, Wei L, Chen YX et al (2014) ZnO nanosheet arrays constructed on weaved titanium wire for CdS-sensitized solar cells. Nanoscale Res Lett 9:112

    Article  Google Scholar 

  16. Meissner D, Memming R, Kastening B (1988) Photoelectrochemistry of cadmium sulfide reanalysis of photocorrosion and flat-band potential. J Phys Chem 92(12):3476–3483

    Article  Google Scholar 

  17. Chen YB, Wang LZ, Lu GQ et al (2011) Nanoparticles enwrapped with nanotubes: a unique architecture of CdS/titanate nanotubes for efficient photocatalytic hydrogen production from water. J Mater Chem 21(13):5134–5141

    Article  Google Scholar 

  18. Ye M, Gong J, Lai Y et al (2012) High efficiency photoelectrocatalytic hydrogen generation enabled by palladium quantum dots sensitized TiO2 nanotube arrays. J Am Chem Soc 134:15720

    Article  Google Scholar 

  19. Park H, Kim YK, Choi W (2011) Reversing CdS preparation order and its effects on photocatalytic hydrogen production of CdS/Pt-TiO2 hybrids under visible light. J Phys Chem C 115:6141–6148

    Article  Google Scholar 

  20. Chen WT, Yang TT, Hsu YJ (2008) Au-CdS core-shell nanocrystals with controllable shell thickness and photoinduced charge separation property. Chem Mater 20:7204–7206

    Article  Google Scholar 

  21. Liu Y, Chic M, Zhang ZX et al (2014) Ag/CdS heterostructural composites: fabrication, characterizations and photocatalysis. Appl Sur Sci 313:558–562

    Article  Google Scholar 

  22. Jia TT, Kolpin A, Tsang E et al (2014) A graphene dispersed CdS-MoS2 nanocrystal ensemble for cooperative photocatalytic hydrogen production from water. Chem Commun 50:1185

    Article  Google Scholar 

  23. Preethi V, Kanmani S (2014) Photocatalytic hydrogen production using Fe2O3-based core shell nano particles with ZnS and CdS. Int J Hydrogen Energy 39:1613–1622

    Article  Google Scholar 

  24. Tubtimtae A, Lee MY (2013) Optical and photovoltaic properties of CdS/Ag2S quantum dots cosensitized-solar cells. Mater Sci Forum 761:15–18

    Article  Google Scholar 

  25. Ge L, Han C, Xiao X et al (2013) Synthesis and characterization of composite visible light active photocatalysts MoS2-g-C3N4 with enhanced hydrogen evolution activity. Int J Hydrogen Energy 38(17):6960–6969

    Article  Google Scholar 

  26. Chen GP, Li DM, Luo YH et al (2012) Ball-milling combined calcination synthesis of MoS2/CdS photocatalysts for high photocatalytic H2 evolution activity under visible light irradiation. J Appl Catal A 443–444:138–144

    Article  Google Scholar 

  27. Min YL, He GQ, Xu QJ et al (2014) Dual-functional MoS2 sheet-modified CdS branchlike heterostructures with enhanced photostability and photocatalytic activity. J Mater Chem A 2:2578

    Article  Google Scholar 

  28. Li YX, Wang H, Peng SQ (2014) Tunable photodeposition of MoS2 onto a composite of reduced graphene oxide and CdS for synergic photocatalytic hydrogen generation. J Phys Chem C 118:19842–19848

    Article  Google Scholar 

  29. Zong X, Yan HJ, Li C et al (2008) Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J Am Chem Soc 130:7176–7177

    Article  Google Scholar 

  30. Hu HW, Ding JN, Yuan NY et al (2013) Photodeposition of Ag2S on TiO2 nanorod arrays for quantum dot-sensitized solar cells. Nanoscale Res Lett 8:10

    Article  Google Scholar 

  31. Zamiri R, Ahangar AH, Tobaldi DM (2014) Fabricating and characterising ZnO-ZnS-Ag2S ternary nanostructures with efficient solar-light photocatalytic activity. Phys Chem 16:22418–22425

    Google Scholar 

  32. Xia XH, Zhao XJ, Wang CM (2014) Highly porous Ag-Ag2S/MoS2 with additional active sites synthesized by chemical etching method for enhanced electrocatalytic hydrogen evolution. Electrochim Acta 142:173–181

    Article  Google Scholar 

  33. Jagadeesh E, Khan B, Khan SS et al (2015) Toxic potential of iron oxide, CdS/Ag2S composite, CdS and Ag2S NPs on a fresh water alga mougeotiasp. Colloid Surf B 125:284–290

    Article  Google Scholar 

  34. Zhong JS, Wang QY, Zhou J (2015) Heterojunction engineering of CdS and Ag2S quantum dots co-sensitized TiO2 nanotube array photoelectrode. J Electrochem Soc 162(1):15–18

    Article  Google Scholar 

  35. Munari M, Sturve J, Frenzill G et al (2014) Genotoxic effects of CdS quantum dots and Ag2S nanoparticles in fish cell lines (RTG-2). Mutat Res 775–776:89–93

    Article  Google Scholar 

  36. Shen SH, Guo LJ, Chen XB et al (2010) Effect of Ag2S on solar-driven photocatalytic hydrogen evolution of nanostructured CdS. Int J Hydrogen Energy 35:7110–7115

    Article  Google Scholar 

  37. Sun MX, Fang YL, Wang Y et al (2015) Synthesis of Cu2O/graphene/rutile TiO2 nanorod ternary composites with enhanced photocatalytic activity. J Alloys Compd 650:520–527

    Article  Google Scholar 

  38. Bao NZ, Shen LM, Takata T et al (2008) Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible light. Chem Mater 20:110–117

    Article  Google Scholar 

  39. Sekhar H, Rao DN (2012) Spectroscopic studies on Zn-doped CdS nanopowders prepared by simple coprecipitation method. J Mater Sci 47:1964–1971. doi:10.1007/s10853-011-5991-9

    Article  Google Scholar 

  40. Li YX, Hu YF, Peng SQ et al (2009) Synthesis of CdS nanorods by an ethylenediamine assisted hydrothermal method for photocatalytic hydrogen evolution. J Phys Chem C 113:9352–9358

    Article  Google Scholar 

  41. Jang JS, Joshi UA, Lee JS (2007) Solvothermal synthesis of CdS nanowires for photocatalytic hydrogen and electricity production. J Phys Chem C 111:13280–13287

    Article  Google Scholar 

  42. Chen Z, Zhang N, Xu YJ (2013) Synthesis of graphene-ZnO nanorod nanocomposites with improved photoactivity and anti-photocorrosion. CrystEngComm 15:3022–3030

    Article  Google Scholar 

  43. Weng B, Yang MQ, Zhang N et al (2014) Toward the enhanced photoactivity and photostability of ZnO nanospheres via intimate surface coating with reduced graphene oxide. J Mater Chem A 2:9380–9389

    Article  Google Scholar 

  44. Li YD, Liao HW, Ding Y et al (1999) Solvothermal elemental direct reaction to CdE (E = S, Se, Te) semiconductor nanorod. Inorg Chem 38:1382–1387

    Article  Google Scholar 

  45. Xu D, Liu ZP, Liang JB et al (2005) Solvothermal synthesis of CdS nanowires in a mixed solvent of ethylenediamine and dodecanethiol. J Phys Chem B 109:14344–14349

    Article  Google Scholar 

  46. Liu SQ, Chen Z, Zhang N et al (2013) An efficient self-assembly of CdS nanowires-reduced graphene oxide nanocomposites for selective reduction of nitro organics under visible light irradiation. J Phys Chem C 117:8251–8261

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Innovation Program of Shanghai Municipal Education Commission (15ZZ092), Training Program for Young Teachers in Shanghai Colleges and Universities (ZZgcd14010), Startup Foundation of Shanghai University of Engineering Science (No. 2014-22), and Graduate Innovation Program of Shanghai University of Engineering Science (15KY0516).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingxuan Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Sun, M., Fang, Y. et al. Ag2S and MoS2 as dual, co-catalysts for enhanced photocatalytic degradation of organic pollutions over CdS. J Mater Sci 51, 779–787 (2016). https://doi.org/10.1007/s10853-015-9401-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9401-6

Keywords

Navigation