Skip to main content
Log in

Interfacial reactions between a crystallizing sealing glass from the system BaO–ZnO–NiO–SiO2 and Crofer 22 APU

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A glass from the system BaO–ZnO–NiO–SiO2 was used as a crystallizing glass seal for Crofer 22 APU steel. The glass was characterized with respect to crystallization, thermal expansion, and sealing behavior. In crystallized specimens, different barium silicates as well as a solid solution with the generalized compositions BaZn2−x Ni x Si2O7 were detected. The coefficient of thermal expansion can be adjusted between 9.3 and 12.5 × 10−6 K−1, depending on the thermal treatment. An increasing crystallization temperature leads to an increase in the coefficient of thermal expansion. Sealing experiments were performed on Crofer 22 APU in inert atmosphere to prevent the joint from forming BaCrO4. Strong interfacial reactions occur which, depending on the processing temperature, lead to the formation of metallic nickel particles near the interface. The mechanism of this reaction is described and discussed. Sealing temperatures between 815 and 965 °C, lying in the range of the working temperature of high-temperature reactors, were applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Thieme C, Rüssel C (2014) Cobalt containing crystallizing glass seals for solid oxide fuel cells—a new strategy for strong adherence to metals and high thermal expansion. J Power Sources 258:182–188

    Article  Google Scholar 

  2. Dyer PN, Richards RE, Russek SL, Taylor DM (2000) Ion transport membrane technology for oxygen separation and syngas production. Solid State Ion 134:21–33

    Article  Google Scholar 

  3. Apfel H, Rzepka M, Tu H, Stimming U (2006) Thermal start-up behaviour and thermal management of SOFC’s. J Power Sources 154:370–378

    Article  Google Scholar 

  4. Mahapatra MK, Lu K (2010) Glass-based seals for solid oxide fuel and electrolyzer cells—a review. Mater Sci Eng, R 67:65–85

    Article  Google Scholar 

  5. Kerstan M, Müller M, Rüssel C (2012) Thermal expansion of Ba2ZnSi2O7, BaZnSiO4 and the solid solution series BaZn2−xMgxSi2O7 (0 ≤ x ≤ 2) studied by high-temperature X-ray diffraction and dilatometry. J Solid State Chem 188:84–91

    Article  Google Scholar 

  6. Kerstan M, Rüssel C (2011) Barium silicates as high thermal expansion seals for solid oxide fuel cells studied by high-temperature X-ray diffraction (HT-XRD). J Power Sources 196:7578–7584

    Article  Google Scholar 

  7. Kerstan M, Müller M, Rüssel C (2011) Binary, ternary and quaternary silicates of CaO, BaO and ZnO in high thermal expansion seals for solid oxide fuel cells studied by high-temperature X-ray diffraction (HT-XRD). Mater Res Bull 46:2456–2463

    Article  Google Scholar 

  8. Hu AM, Li M, Dali DLM, Liang KM (2005) Crystallization and properties of a spodumene-willemite glass ceramic. Thermochim Acta 437:110–113

    Article  Google Scholar 

  9. Pascual MJ, Kharton VV, Tsipis E et al (2006) Transport properties of sealants for high-temperature electrochemical applications: RO–BaO–SiO2 (R = Mg, Zn) glass–ceramics. J Eur Ceram Soc 26:3315–3324

    Article  Google Scholar 

  10. Lin JH, Lu GX, Du J et al (1999) Phase transition and crystal structures of BaZn2Si2O7. J Phys Chem Solids 60:975–983

    Article  Google Scholar 

  11. Kerstan M, Thieme C, Grosch M et al (2013) BaZn2Si2O7 and the solid solution series BaZn2−xCoxSi2O7 (0 ≤ x ≤ 2) as high temperature seals for solid oxide fuel cells studied by high-temperature X-ray diffraction and dilatometry. J Solid State Chem 207:55–60

    Article  Google Scholar 

  12. Thieme C, Rüssel C (2015) Thermal expansion behavior in the solid solution series BaMg2−xCoxSi2O7 (0 ≤ x ≤ 2), studied by dilatometry and in situ high-temperature X-ray diffraction. Thermochim Acta 612:49–54

    Article  Google Scholar 

  13. Thieme C, Rüssel C (2015) High thermal expansion in the solid solution series BaM2−xNixSi2O7 (M = Zn, Mg, Co)—the effect of Ni-concentration on phase transition and expansion. J Mater Sci 50:3416–3424. doi:10.1007/s10853-015-8900-9

    Article  Google Scholar 

  14. Chou Y-S, Stevenson JW, Gow RN (2007) Novel alkaline earth silicate sealing glass for SOFC Part I. The effect of nickel oxide on the thermal and mechanical properties. J Power Sources 168:426–433

    Article  Google Scholar 

  15. Lara C, Pascual MJ, Prado MO, Durán A (2004) Sintering of glasses in the system RO–Al2O3–BaO–SiO2 (R = Ca, Mg, Zn) studied by hot-stage microscopy. Solid State Ion 170:201–208

    Article  Google Scholar 

  16. Thieme C, Rüssel C (2014) Temperature resistant red and purple ceramic pigments based on the solid solution series BaZn2−xNixSi2O7 and BaMg2−xNixSi2O7. Dyes Pigment 111:75–80

    Article  Google Scholar 

  17. Pascual MJ, Guillet A, Durán A (2007) Optimization of glass–ceramic sealant compositions in the system MgO–BaO–SiO2 for solid oxide fuel cells (SOFC). J Power Sources 169:40–46

    Article  Google Scholar 

  18. Lara C, Pascual MJ, Durán A (2004) Glass-forming ability, sinterability and thermal properties in the systems RO–BaO–SiO2 (R = Mg, Zn). J Non-Cryst Solids 348:149–155

    Article  Google Scholar 

  19. Oehlschlegel G, Kockel A, Biedl A (1974) Anisotrope wärmedehnung und mischkristallbildung einiger verbindungen des ternären systems BaO-Al2O3-SiO2, teil I. Messungen an strukturen mit zweidimensionaler verknüpfung von (Si, Al)O4-tetraedern und angaben über experimentelle Grenzen. Glastech Ber 47:24–30

    Google Scholar 

  20. Takahashi Y, Ihara R, Fujiwara T, Osada M (2011) Crystallization and morphology of glassy sanbornite. Key Eng Mater 485:301–304

    Article  Google Scholar 

  21. Herrmann A, Simon A, Rüssel C (2012) Preparation and luminescence properties of Eu2+-doped BaSi2O5 glass-ceramics. J Lumin 132:215–219

    Article  Google Scholar 

  22. Roth RS, Levin EM (1959) Phase equilibria in the subsystem barium disilicate-dibarium trisilicate. J Res Natl Bur Stand 62:193–200

    Article  Google Scholar 

  23. Rüssel C, Freude E (1989) Voltammetric studies of the redox behaviour of various multivalent ions in soda-lime-silica glass melts. Phys Chem Glasses 30:62–68

    Google Scholar 

  24. Claußen O, Rüssel C (1996) Voltammetry in silicate and borosilicate melts. Ber Bunsenges Phys Chem 100:1475–1478

    Article  Google Scholar 

  25. Pistorius CWFT, Pistorius MC (1962) Lattice constants and thermal-expansion properties of the chromates and selenates of lead, strontium and barium. Z Kristallogr 117:259–271

    Article  Google Scholar 

  26. Yang Z, Meinhardt KD, Stevenson JW (2003) Chemical compatibility of barium-calcium-aluminosilicate-based sealing glasses with the ferritic stainless steel interconnect in SOFCs. J Electrochem Soc 150:A1095–A1101

    Article  Google Scholar 

  27. Hesse KF, Liebau F (1980) Crystal chemistry of silica-rich barium silicates. III. Refinement of the crystal structures of the layer silicates Ba2[Si4O10] (l), (sanbornite), and Ba2[Si4O10] (h). Z Kristallogr 153:33–41

    Google Scholar 

  28. Douglass RM (1958) The crystal structure of sanbornite, BaSi2O5. Am Mineral 43:517–536

    Google Scholar 

  29. Hesse KF, Liebau F (1980) Crystal chemistry of silica-rich barium silicates. I. Refinement of the crystal structures of Ba4[Si6O16], Ba5[Si8O21] and Ba6[Si10O26], silicates with triple, quadruple and quintuple chains. Z Kristallogr 153:3–17

    Google Scholar 

  30. Lentz A, Büchele W, Schöllhorn H (1986) Crystal growth from silica gels and single crystal structure of bariumchromate. Cryst Res Technol 21:827–833

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Thieme.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thieme, C., Rüssel, C. Interfacial reactions between a crystallizing sealing glass from the system BaO–ZnO–NiO–SiO2 and Crofer 22 APU. J Mater Sci 51, 756–765 (2016). https://doi.org/10.1007/s10853-015-9398-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9398-x

Keywords

Navigation