Skip to main content
Log in

Synthesis and characterization of highly ordered self-assembled bioactive fulleropeptides

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A series of N-substituted fulleropyrrolidines containing peptide side chain was synthesized by the quantitative, TFA-mediated deprotection of the corresponding tert-butyl esters. The structures of all compounds were determined by comparative analysis of spectroscopic and spectrometric data. The electrochemical characterization, conducted by cyclic voltammetry at room temperature confirmed slightly attenuated reducibility in comparison to pristine C60 and a weak long-range electron-accepting effect of the Gly3-fragment. The introduction of the peptide subunit led to improved solubility and enabled examination of the antioxidant properties in water environment. A notable radical scavenging activity of the fullerene subunit remained almost unchanged in all compounds. The investigation of the supramolecular self-assembling, performed by the scanning electron microscopy revealed an influence of the side chain, particularly the fraction of the hydrophobic residue, as well as the substrate structure on the final morphology. Most of the compounds underwent highly ordered multi-stage hierarchical assembling to the attractive, flower-shaped supramolecular aggregates during both the precipitation and slow evaporation of the solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Montellano Lόpez A, Mateo-Alonso A, Prato M (2011) Materials chemistry of fullerene C60 derivatives. J Mater Chem 21:1305–1318

    Article  Google Scholar 

  2. Martín N (2006) New challenges in fullerene chemistry. Chem Commun 20:2093–2104

    Article  Google Scholar 

  3. Lai Y-Y, Cheng Y-J, Hsu C-S (2014) Applications of functional fullerene materials in polymer solar cells. Energy Environ Sci 7:1866–1883

    Article  Google Scholar 

  4. Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H (2014) Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat Commun 5:5293. doi:10.1038/ncomms6293

    Article  Google Scholar 

  5. Yan W, Seifermann SM, Pierrat P, Bräse S (2015) Synthesis of highly functionalized C60 fullerene derivatives and their applications in material and life sciences. Org Biomol Chem 13:25–54

    Article  Google Scholar 

  6. Bosi S, Da Ros T, Spalluto G, Prato M (2003) Fullerene derivatives: an attractive tool for biological applications. Eur J Med Chem 38:913–923

    Article  Google Scholar 

  7. Bakry R, Vallant RM, Najam-ul-Haq M, Rainer M, Szabo Z, Huck CW, Bonn GK (2007) Medicinal applications of fullerenes. Int J Nanomed 2:639–649

    Google Scholar 

  8. Partha R, Conyers JL (2009) Biomedical applications of functionalized fullerene-based nanomaterials. Int J Nanomed 4:261–275

    Article  Google Scholar 

  9. Bjelakovic MS, Godjevac DM, Milic DR (2007) Synthesis and antioxidant properties of fullero-steroidal covalent conjugates. Carbon 45:2260–2265

    Article  Google Scholar 

  10. Diederich F, Gómez-López M (1999) Supramolecular fullerene chemistry. Chem Soc Rev 28:263–277

    Article  Google Scholar 

  11. Zhang E-Y, Wang C-R (2009) Fullerene self-assembly and supramolecular nanostructures. Curr Opin Colloid Interface Sci 14:148–156

    Article  Google Scholar 

  12. Babu SS, Möhwald H, Nakanishi T (2010) Recent progress in morphology control of supramolecular fullerene assemblies and its applications. Chem Soc Rev 39:4021–4035

    Article  Google Scholar 

  13. Guldi DM, Zerbetto F, Georgakilas V, Prato M (2005) Ordering fullerene materials at nanometer dimensions. Acc Chem Res 38:38–43

    Article  Google Scholar 

  14. Lens M (2009) Use of fullerenes in cosmetics. Recent Pat Biotechnol 3:118–123

    Article  Google Scholar 

  15. Tam J, Liu J, Yao Z (2013) Effect of microstructure on the antioxidant properties of fullerene polymer solutions. RSC Adv 3:4622–4627

    Article  Google Scholar 

  16. Nakanishi T (2010) Supramolecular soft and hard materials based on self-assembly algorithms of alkyl-conjugated fullerenes. Chem Commun 46:3425–3436

    Article  Google Scholar 

  17. Asanuma H, Li H, Nakanishi T, Möhwald H (2010) Fullerene derivatives that bear aliphatic chains as unusual surfactants: hierarchical self-organization, diverse morphologies, and functions. Chem Eur J 16:9330–9338

    Article  Google Scholar 

  18. Kawauchi T, Kumaki J, Yashima E (2006) Nanosphere and nanonetwork formations of [60]fullerene-end-capped stereoregular poly(methylmethacrylate)s through stereocomplex formation combined with self-assembly of the fullerenes. J Am Chem Soc 128:10560–10567

    Article  Google Scholar 

  19. Gan H, Liu H, Li Y, Gan L, Jiang L, Jiu T, Wang N, He X, Zhu D (2005) Fabrication of fullerene nanotube arrays using a template technique. Carbon 43:205–208

    Article  Google Scholar 

  20. Cassell AM, Asplund CL, Tour JM (1999) Self-assembling supramolecular nanostructures from a C60 derivative: nanorods and vesicles. Angew Chem Int Ed 38:2403–2405

    Article  Google Scholar 

  21. Geng J, Zhou W, Skelton P, Yue W, Kinloch IA, Windle AH, Johnson BFG (2008) Crystal structure and growth mechanism of unusually long fullerene (C60) nanowires. J Am Chem Soc 130:2527–2534

    Article  Google Scholar 

  22. Wang N, Li Y, He X, Gan H, Li Y, Huang C, Xu X, Xiao J, Wang S, Liu H, Zhu D (2006) Synthesis and characterization of a novel electrical and optical-active triads containing fullerene and perylenebisimide units. Tetrahedron 62:1216–1222

    Article  Google Scholar 

  23. Prato M, Bianco A, Maggini M, Scorrano G, Toniolo C, Wudl F (1993) Synthesis and characterization of the first fullerene-peptide. J Org Chem 58:5578–5580

    Article  Google Scholar 

  24. Bianco A, Bertolini T, Crizma M, Valle G, Toniolo C, Maggini M, Scorrano G, Prato M (1997) β-Turn induction by C60-based fulleroproline: synthesis and conformational characterization of Fpr/Pro small peptides. J Pept Res 50:159–170

    Article  Google Scholar 

  25. Sofou P, Elemes Y, Panou-Pomonis E, Stavrakoudis A, Tsikaris V, Sakarellos C, Sakarellos-Daitsiotis M, Maggini M, Formaggio F, Toniolo C (2004) Synthesis of a proline-rich [60]fullerene peptide with potential biological activity. Tetrahedron 60:2823–2828

    Article  Google Scholar 

  26. Tsumoto H, Takahashi K, Suzuki T, Nakagawa H, Kohda K, Miyata N (2008) Preparation of C60-based active esters and coupling of C60 moiety to amines or alcohols. Bioorg Med Chem Lett 18:657–660

    Article  Google Scholar 

  27. Yang J, Alemany LB, Driver J, Hartgerink JD, Barron AR (2007) Fullerene-derivatized amino acids: synthesis, characterization, antioxidant properties, and solid-phase peptide synthesis. Chem Eur J 13:2530–2545

    Article  Google Scholar 

  28. Bianco A (2005) Efficient solid-phase synthesis of fullero-peptides using merrifield strategy. Chem Commun 25:3174–3176

    Article  Google Scholar 

  29. Aroua S, Schweizer WB, Yamakoshi Y (2014) C60 pyrrolidine bis-carboxylic acid derivative as a versatile precursor for biocompatible fullerenes. Org Lett 16:1688–1691

    Article  Google Scholar 

  30. Toniolo C, Bianco A, Maggini M, Scorrano G, Prato M, Marastoni M, Tomatis R, Spisani S, Palú G, Blair ED (1994) A bioactive fullerene peptide. J Med Chem 37:4558–4562

    Article  Google Scholar 

  31. Pantarotto D, Tagmatarchis N, Bianco A, Prato M (2004) Synthesis and biological properties of fullerene-containing amino acids and peptides. Mini Rev Med Chem 4:805–814

    Google Scholar 

  32. Rouse JG, Yang J, Ryman-Rasmussen JP, Barron AR, Monteiro-Riviere NA (2007) Effects of mechanical flexion on the penetration of fullerene amino acid-derivatized peptide nanoparticles through skin. Nano Lett 7:155–160

    Article  Google Scholar 

  33. Yang J, Wang K, Driver J, Yang J, Barron AR (2007) The use of fullerene substituted phenylalanine amino acid as a passport for peptides through cell membranes. Org Biomol Chem 5:260–266

    Article  Google Scholar 

  34. Jennepalli S, Pyne SG, Keller PA (2014) [60]Fullerenyl amino acids and peptides: a review of their synthesis and applications. RSC Adv 4:46383–46398

    Article  Google Scholar 

  35. Sun T, Xu Z (2006) Radical scavenging activities of α-alanine C60 adduct. Bioorg Med Chem Lett 16:3731–3734

    Article  Google Scholar 

  36. Gazit E (2007) Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization. Chem Soc Rev 36:1263–1269

    Article  Google Scholar 

  37. Belavtseva EM, Romanova VS, Lapshin AI, Kuleshova EF, Parnes ZN, Vol’pin ME (1996) Electron microscopy study of amino acid derivatives of [60]fullerene in non-aqueous solution. Mendeleev Commun 6:171–173

    Article  Google Scholar 

  38. Vol’pin ME, Belavtseva EM, Romanova VS, Lapshin AI, Aref’eva LI, Parnes ZN (1995) Self-assembling of associates of amino acids and dipeptide derivatives of [60]fullerene in aqueous solution: a study by scanning electron microscopy. Mendeleev Commun 5:129–131

    Article  Google Scholar 

  39. Bjelaković M, Todorović N, Milić D (2012) An approach to nanobioparticles—synthesis and characterization of novel fulleropeptides. Eur J Org Chem 2012:5291–5300

    Article  Google Scholar 

  40. Bjelaković MS, Kop TJ, Vlajić M, Đorđević J, Milić DR (2014) Design, synthesis, and characterization of fullerene-peptide-steroid covalent hybrids. Tetrahedron 70:8564–8570

    Article  Google Scholar 

  41. Lens MB, De Marni E, Gullo R, Citernesi U and Crippa R (2007) Liposomes loaded with fullerene and process for their preparation, WO, 2007043074

  42. Zhang X, Takeuchi M (2009) Controlled fabrication of fullerene C60 into microspheres of nanoplates through porphyrin-polymer-assisted self-assembly. Angew Chem Int Ed 48:9646–9651

    Article  Google Scholar 

  43. Bou R, Codony R, Tres A, Decker EA, Guardiola F (2008) Determination of hydroperoxides in foods and biological samples by the ferrous oxidation-xylenol orange method: a review of the factors that influence the method’s performance. Anal Biochem 377:1–15

    Article  Google Scholar 

  44. Dubois D, Moninot G, Kutner W, Jones MT, Kadish KM (1992) Electroreduction of buckminsterfullerene, C60, in aprotic solvents Solvent, supporting electrolyte, and temperature effects. J Phys Chem 96:7137–7145

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education, Science and Technological Development (Project No. 172002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragana Milić.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (doc 27506 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bjelaković, M., Kop, T., Maslak, V. et al. Synthesis and characterization of highly ordered self-assembled bioactive fulleropeptides. J Mater Sci 51, 739–747 (2016). https://doi.org/10.1007/s10853-015-9396-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9396-z

Keywords

Navigation