Journal of Materials Science

, Volume 50, Issue 24, pp 8128–8141 | Cite as

Atomic scale modeling of shock response of fused silica and α-quartz

  • J. Wang
  • A. M. Rajendran
  • A. M. Dongare
Original Paper


Large-scale molecular dynamics (MD) simulations are carried out using the Tersoff potential to understand the shock wave propagation behavior and the microstructural response of amorphous silica (a-SiO2) and α-quartz. The effect of shock pressure on the densification and phase transformation behavior is investigated using impact velocities of 0.5, 1.0, 1.5, and 2.0 km/s for a-SiO2 and using impact velocities of 2.0 and 3.0 km/s for α-quartz. MD simulations for a-SiO2 suggest that impact velocities of 1.5 km/s and higher result in average pressures that are greater than 9 GPa for the compressed material leading to permanent densification of the material behind the shock front. In addition, the high peak pressures render a phase transformation of the amorphous phase to the high-pressure stishovite phase, and the microstructure corresponds to a heterogeneous mixture of stishovite and liquid SiO2. Spall failure due to the interaction of the reflected tensile waves, however, is not observed for any of the velocities considered for amorphous silica as the peak tensile pressure generated is insufficient to nucleate cracks. This is verified through MD simulations of uniaxial expansion of fused silica to compute the spall strength at the strain rates generated during shock simulations (109 to 1010 s−1). The uniaxial expansion simulations suggest a brittle mode of failure for a-SiO2, as observed experimentally. In comparison, shock-induced densification and phase transformation behavior to the high-pressure stishovite phase are also observed for α-quartz for an impact velocity of 3.0 km/s. The threshold pressures for the densification and phase transformation behavior for amorphous silica and α-quartz compare very well with those observed experimentally.


Impact Velocity Shock Front Amorphous Silica Shock Pressure Spall Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The research was sponsored by the University of Connecticut Research Foundation (UCRF) through the Faculty Large Grant funding program. The authors also acknowledge the Booth Engineering Center for Advanced Technology (BECAT) high performance computing resources at the University of Connecticut used to carry out this research.


  1. 1.
    Limiting transparent armor damage reduces cost and replacement burden (2014) In: TARDEC Public Affairs.
  2. 2.
    Bridgman PW, Šimon I (1953) Effects of very high pressures on glass. J Appl Phys 24(4):405–413CrossRefGoogle Scholar
  3. 3.
    Wackerle J (1962) Shock-wave compression of quartz. J Appl Phys 33(3):922–937CrossRefGoogle Scholar
  4. 4.
    Hemley R, Mao H, Bell P, Mysen B (1986) Raman spectroscopy of SiO2 glass at high pressure. Phys Rev Lett 57(6):747–750CrossRefGoogle Scholar
  5. 5.
    Sugiura H (1981) Dynamic response of fused quartz in the permanent densification region. J Appl Phys 52(5):3375–3382CrossRefGoogle Scholar
  6. 6.
    Sugiura H, Ikeda R, Kondo K, Yamadaya T (1997) Densified silica glass after shock compression. J Appl Phys 81(4):1651–1655CrossRefGoogle Scholar
  7. 7.
    Zha C-S, Hemley R, Mao H-K, Duffy T, Meade C (1994) Acoustic velocities and refractive index of SiO2 glass to 57.5 GPa by Brillouin scattering. Phys Rev B 50(18):13105–13112CrossRefGoogle Scholar
  8. 8.
    Schmitt DR, Ahrens TJ (1989) Shock temperatures in silica glass: implications for modes of shock-induced deformation, phase transformation, and melting with pressure. J Geophys Res 94(B5):5851–5871CrossRefGoogle Scholar
  9. 9.
    Grady DE, Murri WJ, Fowles GR (1974) Quartz to stishovite: wave propagation in the mixed phase region. J Geophys Res 79(2):332–338CrossRefGoogle Scholar
  10. 10.
    Graham RA (1974) Shock-wave compression of x-cut quartz as determined by electrical response measurements. J Phys Chem Solids 35(3):355–372CrossRefGoogle Scholar
  11. 11.
    Daw MS, Baskes MI (1984) Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B 29(12):6443–6453CrossRefGoogle Scholar
  12. 12.
    Foiles SM (1985) Application of the embedded-atom method to liquid transition metals. Phys Rev B 32(6):3409–3415CrossRefGoogle Scholar
  13. 13.
    Johnson RA (1988) Analytic nearest-neighbor model for fcc metals. Phys Rev B 37(8):3924–3931CrossRefGoogle Scholar
  14. 14.
    Dongare AM, Rajendran AM, LaMattina B, Zikry MA, Brenner DW (2010) Atomic scale studies of spall behavior in nanocrystalline Cu. J Appl Phys 108(11):113518CrossRefGoogle Scholar
  15. 15.
    Dongare AM, Rajendran AM, Lamattina B, Brenner DW, Zikry MA (2009) Atomic-Scale study of plastic-yield criterion in nanocrystalline Cu at high strain rates. Metall Mater Trans A 41(2):523–531CrossRefGoogle Scholar
  16. 16.
    Dongare A, Rajendran A, LaMattina B, Zikry M, Brenner D (2009) Atomic scale simulations of ductile failure micromechanisms in nanocrystalline Cu at high strain rates. Phys Rev B 80(10):104103CrossRefGoogle Scholar
  17. 17.
    Dongare AM, Rajendran AM, LaMattina B, Zikry MA, Brenner DW. Atomistic studies of void-growth based yield criteria in single crystal Cu at high strain rates. In: AIP conference proceedings, vol. 1195, pp 769–772Google Scholar
  18. 18.
    Dongare AM, LaMattina B, Rajendran AM (2011) Atomic scale studies of spall behavior in single crystal Cu. Procedia Eng 10:3636–3641CrossRefGoogle Scholar
  19. 19.
    Valisetty RR, Dongare AM, Rajendran AM, Namburu RR (2013) Effect of the strain rate and microstructure on damage growth in aluminum. Comput Mater Contin 36(3):231–255Google Scholar
  20. 20.
    Tsuneyuki S, Tsukada M, Aoki H, Matsui Y (1988) First-principles interatomic potential of silica applied to molecular dynamics. Phys Rev Lett 61(7):869–872CrossRefGoogle Scholar
  21. 21.
    van Beest BWH, Kramer GJ (1990) Force fields for silicas and aluminophosphates based on ab initio calculations. Phys Rev Lett 64(16):1955–1958CrossRefGoogle Scholar
  22. 22.
    Barmes F, Soulard L, Mareschal M (2006) Molecular dynamics of shock-wave induced structural changes in silica glasses. Phys Rev B 73(22):224108CrossRefGoogle Scholar
  23. 23.
    Farrow MR, Probert MI (2011) Atomistic molecular dynamics simulations of shock compressed quartz. J Chem Phys 135(4):044508CrossRefGoogle Scholar
  24. 24.
    Munetoh S, Motooka T, Moriguchi K, Shintani A (2007) Interatomic potential for Si–O systems using Tersoff parameterization. Comput Mater Sci 39(2):334–339CrossRefGoogle Scholar
  25. 25.
    Tersoff J (1988) New empirical approach for the structure and energy of covalent systems. Phys Rev B 37(12):6991–7000CrossRefGoogle Scholar
  26. 26.
    Su R, Xiang M, Chen J, Jiang S, Wei H (2014) Molecular dynamics simulation of shock induced ejection on fused silica surface. J Appl Phys 115(19):193508CrossRefGoogle Scholar
  27. 27.
    Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19CrossRefGoogle Scholar
  28. 28.
    Beeman D (1976) Some multistep methods for use in molecular dynamics calculations. J Comput Phys 20(2):130–139CrossRefGoogle Scholar
  29. 29.
    Brutzel LV, Rountree CL, Kalia RK, Nakano A, Vashishta P (2001) Dynamic fracture mechanisms in nanostructured and amorphous silica glasses million-atom molecular dynamics simulations. In: MRS online proceedings library, 703 null-nullGoogle Scholar
  30. 30.
    Muralidharan K, Simmons JH, Deymier PA, Runge K (2005) Molecular dynamics studies of brittle fracture in vitreous silica: review and recent progress. J Non Cryst Solids 351(18):1532–1542CrossRefGoogle Scholar
  31. 31.
    Mantisi B, Tanguy A, Kermouche G, Barthel E (2012) Atomistic response of a model silica glass under shear and pressure. Eur Phys J B 85(9):1–13CrossRefGoogle Scholar
  32. 32.
    Yuan F, Huang L (2012) Molecular dynamics simulation of amorphous silica under uniaxial tension: from bulk to nanowire. J Non Cryst Solids 358(24):3481–3487CrossRefGoogle Scholar
  33. 33.
    Muralidharan K, Oh K-D, Deymier PA, Runge K, Simmons JH (2007) Molecular dynamics simulations of atomic-level brittle fracture mechanisms in amorphous silica. J Mater Sci 42(12):4159–4169. doi: 10.1007/s10853-007-1638-2 CrossRefGoogle Scholar
  34. 34.
    Pedone A, Malavasi G, Menziani MC, Segre U, Cormack AN (2008) Molecular dynamics studies of stress–strain behavior of silica glass under a tensile load. Chem Mater 20(13):4356–4366CrossRefGoogle Scholar
  35. 35.
    Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169CrossRefGoogle Scholar
  36. 36.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Materials Science and Engineering, Institute of Materials ScienceUniversity of ConnecticutStorrsUSA
  2. 2.Department of Mechanical EngineeringUniversity of MississippiUniversityUSA

Personalised recommendations