Skip to main content

Processing-structure–property relationships of novel fibrous filters produced by a melt-process


Fibrous filters were produced using a novel melt-based co-extrusion and two-dimensional multiplication technology combined with a delamination technique using high-pressure water jets. The fibrous filters produced comprising continuous and rectangular polypropylene (PP)/polyamide 6 (PA6) micro/nano-fibers have structural integrity and uniform fiber distribution. The orientation procedure greatly improves the PP/PA6 crystal orientation, decreases the fiber sizes, and enhances their mechanical performance as filters. These filters have large surface area, micron-sized pores, and high porosity (~90 %), which are desirable for microfiltration applications. Structural and property analysis was performed on the PP/PA6 fibrous filters produced from varying number of plies of the composite tapes with different draw ratios and fiber width-to-thickness ratios. It was found that increasing the tape draw ratio improves the surface area and porosity of the filters, and decreases its pore size. Using more plies generates decreased filter pore size and unaffected porosity. Filters comprising fibers with higher width-to-thickness ratio have higher surface area, smaller pore size, and unchanged porosity. This melt-based, versatile technology is applicable to any melt-processable polymers to produce fibrous filters having tunable properties for various filtration applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. Ulbricht M (2006) Advanced functional polymer membranes. Polymer 47(7):2217–2262

    Article  Google Scholar 

  2. Joseph DG (1980) Making porous membranes and the membrane products. US4203847A

  3. Lopatin G, Yen LY, Rogers RR (1989) Microporous membranes from polypropylene. US4874567 A

  4. Baker RW (2000) Membrane technology and applications. McGraw-Hill, New York

    Google Scholar 

  5. Yang M, Hou J (2012) Membranes in lithium ion batteries. Membranes 2(3):367–383

    Article  Google Scholar 

  6. Patel M and Bhrambhatt D (2011) Nonwoven technology for unconventional fabrics. Accessed 12 March 2015

  7. Dahiya A, Kamath MG, Hegde RR (2004) Wet-laid nonwovens. Accessed 12 March 2015

  8. Graham K, Ouyang M, Raether T, Grafe T, McDonald B, Knauf P (2002) Polymeric nanofibers in air filtration applications. In: The fifteenth annual technical conference & expo of the American Filtration & Separations Society, Galveston, 9–12 April 2002

  9. Yoon K, Kim K, Wang X, Fang D, Hsiao BS, Chu B (2006) High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating. Polymer 47(7):2434–2441

    Article  Google Scholar 

  10. Aussawasathien D, Teerawattananon C, Vongachariya A (2008) Separation of micron to sub-micron particles from water: electrospun nylon-6 nanofibrous membranes as pre-filters. J Membr Sci 315:11–19

    Article  Google Scholar 

  11. Zong X, Kim K, Fang D, Ran S, Hsiao BS, Chu B (2002) Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 43(16):4403–4412

    Article  Google Scholar 

  12. Park H-S, Park Y (2005) Filtration properties of electrospun ultrafine fiber webs. Korean J Chem Eng 22(1):165–172

    Article  Google Scholar 

  13. Gibson PW, Schreuder-Gibson HL, Rivin D (1999) Electrospun fiber mats: transport properties. AIChE J 45(1):190–195

    Article  Google Scholar 

  14. Gopal R, Kaur S, Ma Z, Chan C, Ramakrishna S, Matsuura T (2006) Electrospun nanofibrous filtration membrane. J Membr Sci 281:581–586

    Article  Google Scholar 

  15. Gopal R, Kaur S, Feng CY, Chan C, Ramakrishna S, Tabe S, Matsuura T (2007) Electrospun nanofibrous polysulfone membranes as pre-filters: particulate removal. J Membr Sci 289:210–219

    Article  Google Scholar 

  16. Ellison CJ, Phatak A, Giles DW, Macosko CW, Bates FS (2007) Melt blown nanofibers: fiber diameter distributions and onset of fiber breakup. Polymer 48(11):3306–3316

    Article  Google Scholar 

  17. Dahiya A, Kamath MG, Hegde RR (2004) Melt blown technology. Accessed 12 March 2015

  18. Okamoto M, Watanabe K, Nukushina Y, Aizawa T (1982) Synthetic filaments and the like. US4350006A

  19. Okamoto M (1983) Multi-component composite filament. US4381335A

  20. Matsui M, Tokura S, Utsuhara Y, Yamabe M (1972) Apparatus for producing multilayer filament. US3672802A

  21. Matsui M, Tokura S, Yamabe M (1976) Mixed filaments. US3968307A

  22. Dasdemir M, Maze B, Anantharamaiah N, Pourdeyhimi B (2012) Influence of polymer type, composition, and interface on the structural and mechanical properties of core/sheath type bicomponent nonwoven fibers. J Mater Sci 47:5955–5969. doi:10.1007/s10853-012-6499-7

    Article  Google Scholar 

  23. Cheng K, Hsu T, Kao L (2011) A microscopic view of chemically activated amorphous carbon nanofibers prepared from core/sheath melt-spinning of phenol formaldehyde-based polymer blends. J Mater Sci 46:3914–3922. doi:10.1007/s10853-011-5315-0

    Article  Google Scholar 

  24. Kiriyama T; Norota S, Segawa Y, Emi S, Imoto T, Azumi T (1983) Novel assembly of composite fibers. US4414276

  25. Zhang D (2014) Advances in filament yarn spinning of textiles and polymers. Woodhead Publishing, Cambridge

    Google Scholar 

  26. Freudenberg Group (2007) Evolon® microfilament technology.,10434,en.html. Accessed 20 May 2015

  27. Breen AL (1965) Spinneret assembly. US3188689A

  28. Hudnall TW (1971) Spinneret assembly for multicomponent fibers. US3601846A

  29. Hagen GA (1993) Process of making multicomponent trilobal fiber. US5244614A

  30. Kent DR, Hoyt MB, Helms CF (2000) Method of making multiple domain fibers. US 6010654A

  31. Pellegrin MT, Gavin PM, Ault PL, Loftus JE, Haines RM, Morris V (1997) Bicomponent polymer fibers made by rotary process. US5702658A

  32. Tanner D (1968) Splittable composite filament. US3418200A

  33. Moriki Y, Ogasawara M (1984) Spinneret for production of composite filaments. US4445833A

  34. Kamiyama M, Numata M (2009) Islands-in-sea type composite fiber and process for producing the same. US7622188B2

  35. Fedorova NV, Pourdeyhimi B (2007) High strength nylon micro- and nanofiber based nonwovens via spunbonding. J Appl Polym Sci 104:3434–3442

    Article  Google Scholar 

  36. Pourdeyhimi B, Fedorova NV, Sharp SR (2013) High strength, durable micro and nano-fiber fabrics produced by fibrillating bicomponent islands in the sea fibers. US8420556B2

  37. Anantharamaiah N, Verenich S, Pourdeyhimi B (2008) Durable nonwoven fabrics via fracturing bicomponent islands-in-the-sea filaments. J Eng Fibers Fabr 3(3):1–9

    Google Scholar 

  38. Wang J, Langhe D, Ponting M, Wnek GE, Korley LTJ, Baer E (2014) Manufacturing of polymer continuous nanofibers using a novel co-extrusion and multiplication technique. Polymer 55(2):673–685

    Article  Google Scholar 

  39. Baer E, Langhe D, Wang J (2013) Production of micro- and nano-fibers by continuous microlayer coextrusion. WO2013155519A1

  40. Salem DR, Moore RAF, Weigmann HD (1987) Macromolecular order in spin-oriented nylon 6 (polycaproamide) fibers. J Polym Sci Part B 25(3):567–589

    Article  Google Scholar 

  41. Kaur S, Sundarrajan S, Rana D, Sridhar R, Gopal R, Matsuura T, Ramakrishna S (2014) Review: the characterization of electrospun nanofibrous liquid filtration membranes. J Mater Sci 49:6143–6159. doi:10.1007/s10853-014-8308-y

    Article  Google Scholar 

  42. Donaldson Company, Inc. (2009) Synteq™ Media technology for Fuel filtration. Accessed 20 May 2015

  43. Huang M-R, Li X-G, Fang B-R (1995) β-nucleators and β-crystalline form of isotactic polypropylene. J Appl Polym Sci 56(10):1323–1337

    Article  Google Scholar 

  44. Ran S, Zong X, Fang D, Hsiao BS, Chu B, Phillips RA (2001) Structural and morphological studies of isotactic polypropylene fibers during heat/draw deformation by in situ synchrotron SAXS/WAXD. Macromolecules 34(8):2569–2578

    Article  Google Scholar 

  45. Heuvel HM, Huisman R (1981) Five-line model for the description of radial X-ray diffractometer scans of nylon 6 yarns. J Polym Sci 19(1):121–134

    Google Scholar 

  46. Vasanthan N, Salem DR (2001) FTIR spectroscopic characterization of structural changes in polyamide-6 fibers during annealing and drawing. J Polym Sci Part B 39(5):536–547

    Article  Google Scholar 

  47. Stepaniak RF, Garton A, Carlsson DJ, Wiles DM (1979) The characterization of nylon 6 filaments by X-ray diffraction. J Appl Polym Sci 23(6):1747–1757

    Article  Google Scholar 

  48. Ellison MS, Lopes PE, Pennington WT (2008) In-situ X-ray characterization of fiber structure during melt spinning. J Eng Fibers Fabr 3(3):10–21

    Google Scholar 

  49. Gutowski TG (1997) Advanced composites manufacturing. John Wiley, New York

    Google Scholar 

  50. Kim S-E, Wang J, Jordan AM, Korley LTJ, Baer E, Pokorski JK (2014) Surface modification of melt extruded poly(e-caprolactone) nanofibers: toward a new scalable biomaterial scaffold. ACS Macro Lett 3(6):585–589

    Article  Google Scholar 

  51. Ma H, Burger C, Hsiao BS, Chu B (2011) Ultrafine polysaccharide nanofibrous membranes for water purification. Biomacromolecules 12(4):970–976

    Article  Google Scholar 

  52. Ma H, Burger C, Hsiao BS, Chu B (2011) Ultra-fine cellulose nanofibers: new nano-scale materials for water purification. J Mater Chem 21(21):7507–7510

    Article  Google Scholar 

  53. Guo A, Roso M, Modesti M, Maire E, Adrien J, Colombo P (2015) In situ carbon thermal reduction method for the production of electrospun metal/SiOC composite fibers. J Mater Sci 50:4221–4231. doi:10.1007/s10853-015-8827-1

    Article  Google Scholar 

Download references


The project was made possible through the generous financial and technical support of the National Science Foundation Science and Technology Center, Center for Layered Polymeric Systems (DMR-0423914). We would also like to thank our collaborator, PolymerPlus, LLC, and the National Science Foundation Small Business Technology Transfer (NSF STTR) for their financial support (award # 1346309).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jia Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Ayyar, R., Olah, A. et al. Processing-structure–property relationships of novel fibrous filters produced by a melt-process. J Mater Sci 51, 188–203 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Draw Ratio
  • Sample Tape
  • Filter Thickness
  • Composite Tape
  • Filter Configuration