Skip to main content
Log in

Development of an in situ method for measuring elastic and total strain fields at the grain scale with an estimation of accuracy

  • Multiscale Modeling and Experiment
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Identifying the parameters of a crystal plasticity model requires the use of grain scale experimental data. The objective of our work is to develop a robust procedure to identify the model using information at the scale of the crystals. In this study, an in situ experimental measurement has been developed for the parameter identification of crystal plasticity models. During the experimental stage, the total \({\left( \epsilon ^t\right) }\) and elastic \({\left( \epsilon ^e\right) }\) strain fields of an Al-alloy specimen with around 12 grains were measured at the same time. The total strain fields were determined by digital image correlation. For this, a speckle-painting was applied on the sample surface which was tracked to derive the total deformation of the specimen surface under loading. The elastic strains were calculated from X-ray diffraction measurements. Yet certain experimental difficulties had to be solved in order to achieve these simultaneous measurements. Besides results and analysis, the corresponding uncertainties during each measurement were quantified as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

References

  1. Abdul-Latif A, Dingli J, Saanouni K (1998) Modeling of complex cyclic inelasticity in heterogeneous polycrystalline microstructure. Mech Mater 30(4):287–305

    Article  Google Scholar 

  2. Badulescu C, Grédiac M, Haddadi H, Mathias JD, Balandraud X, Tran HS (2011) Applying the grid method and infrared thermography to investigate plastic deformation in aluminium multicrystal. Mech Mater 43(1):36–53

    Article  Google Scholar 

  3. Barbe F, Decker L, Jeulin D, Cailletaud G (2001) Intergranular and intragranular behavior of polycrystalline aggregates. part 1: finite element model. Int J Plast 17(4):513–536

    Article  Google Scholar 

  4. Barbe F, Forest S, Cailletaud G (2001) Intergranular and intragranular behavior of polycrystalline aggregates.part 2: results. Int J Plast 17(4):537–563

    Article  Google Scholar 

  5. Brahme A, Alvi M, Saylor D, Fridy J, Rollett A (2006) 3D reconstruction of microstructure in a commercial purity aluminium. Viewpoint set no. 41 3D characterization and analysis of materials organized by G. Spanos. Scr Mater 55(1):75–80

    Article  Google Scholar 

  6. Cédat D, Fandeur O, Rey C, Raabe D (2012) Polycrystal model of the mechanical behavior of a Mo-TiC30vol.% metal-ceramic composite using a 3D microstructure map obtained by a dual beam FIB-SEM. Acta Mater 60:1623–1632

    Article  Google Scholar 

  7. Chow W, Solas D, Puel G, Perrin E, Baudin T, Aubin V (2014) Measurement of complementary strain fields at the grain scale. Adv Mater Res 996:64–69

    Article  Google Scholar 

  8. Crostack HA, Reimers W, Eckold G (1989) Analysis of the plastic deformation in single grains of polycrystalline materials. In: Beck G, Denis S, Simon A (eds) International conference on residual stresses. Springer, Netherlands, p 190

    Chapter  Google Scholar 

  9. De Jaeger J, Solas D, Baudin T, Fandeur O, Schmitt JH, Rey C (2012) Inconel 718 single and multipass modelling of hot forging. Superalloys 2012. Wiley, New York, pp 663–672

    Google Scholar 

  10. Eberl F (2000) Second order heterogeneities in a multicrystal: experimental developments using X-ray diffraction and comparaison with finite element model. Ph.D. thesis, ENSAM, CER de Paris, France (2000)

  11. Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond A 241(1226):376–396

    Article  Google Scholar 

  12. Evrard P, Alvarez-Armas I, Aubin V, Degallaix S (2010) Polycrystalline modeling of the cyclic hardening/softening behavior of an austenitic-ferritic stainless steel. Mech Mater 42(4):395–404

    Article  Google Scholar 

  13. Evrard P, Aubin V, Pilvin P, Degallaix S, Kondo D (2008) Implementation and validation of a polycrystalline model for a bi-phased steel under non-proportional loading paths. Mech Res Commun 35(5):336–343

    Article  Google Scholar 

  14. Evrard P, Bartali AE, Aubin V, Rey C, Degallaix S, Kondo D (2010) Influence of boundary conditions on bi-phased polycrystal microstructure calculation. Int J Solids Struct 47(16):1979–1986

    Article  Google Scholar 

  15. Guilhem Y, Basseville S, Curtit F, Stphan JM, Cailletaud G (2013) Numerical investigations of the free surface effect in three-dimensional polycrystalline aggregates. Comput Mater Sci 70:150–162

    Article  Google Scholar 

  16. Hild F, Roux S (2008) Correliq4: a software for ”finite-element” displacement field measurements by digital image correlation. Internal report 269, ENS, Cachan

  17. Jiang J, Britton TB, Wilkinson AJ (2013) Mapping type III intragranular residual stress distributions in deformed copper polycrystals. Acta Mater 61(15):5895–5904

    Article  Google Scholar 

  18. Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D (2003) Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Solids Struct 40(1314):3647–3679

    Article  Google Scholar 

  19. Koga N, Nakada N, Tsuchiyama T, Takaki S, Ojima M, Adachi Y (2012) Distribution of elastic strain in a pearlite structure. Scr Mater 67(4):400–403

    Article  Google Scholar 

  20. Kroner E (1958) Berechnung der elastischen konstanten des vielkristalls aus den konstanten des einkristalls. Z Phys 151(4):504–518

    Article  Google Scholar 

  21. Lebensohn R, Canova G (1997) A self-consistent approach for modelling texture development of two-phase polycrystals: application to titanium alloys. Acta Mater 45(9):3687–3694

    Article  Google Scholar 

  22. Li Y, Bompard P, Rey C, Aubin V (2012) Polycrystalline numerical simulation of variable amplitude loading effects on cyclic plasticity and microcrack initiation in austenitic steel 304L. Int J Fatigue 42:71–81

    Article  Google Scholar 

  23. Ludwig W, King A, Reischig P, Herbig M, Lauridsen EM, Schmidt S, Proudhon H, Forest S, Cloetens P, Du Roscoat SR et al (2009) New opportunities for 3D materials science of polycrystalline materials at the micrometre lengthscale by combined use of X-ray diffraction and X-ray imaging. Mater Sci Eng 524(1):69–76

    Article  Google Scholar 

  24. Martin G, Sinclair C, Schmitt JH (2013) Plastic strain heterogeneities in an Mg-1Zn-0.5Nd alloy. Scr Mater 68:695–698

    Article  Google Scholar 

  25. Marty B, Moretto P, Gergaud P, Lebrun J, Ostolaza K, Ji V (1997) X-ray study on single crystal superalloy SRR99: mismatch gamma/gamma’, mosaicity and internal stress. Acta Mater 45(2):791–800

    Article  Google Scholar 

  26. Molinari A, Ahzi S, Kouddane R (1997) On the self-consistent modeling of elastic-plastic behavior of polycrystals. Mech Mater 26(1):43–62

    Article  Google Scholar 

  27. Ortner B (1986) The choice of lattice planes in X-ray strain measurements of single crystals. Adv X-ray Anal 29:113–118

    Google Scholar 

  28. Ortner B (1986) Simultaneous determination of the lattice constant and elastic strain in cubic single crystal. Adv X-ray Anal 29:387–394

    Google Scholar 

  29. Petit J, Bornert M, Hofmann F, Robach O, Micha J, Ulrich O, Bourlot CL, Faurie D, Korsunsky A, Castelnau O (2012) Combining laue microdiffraction and digital image correlation for improved measurements of the elastic strain field with micrometer spatial resolution. Symposium on full-field measurements and identification in solid mechanics. Procedia (IUTAM) 4(0):133–143

    Article  Google Scholar 

  30. Saai A (2008) Physical model of the plasticity of a metal crystal CFC subjected to alternating loads: contribution to the definition of multiscale modeling of shaping metal. Ph.D. thesis, University of Savoie, France

  31. Saai A, Louche H, Tabourot L, Chang HJ (2010) Experimental and numerical study of the thermo-mechanical behavior of Al bi-crystal in tension using full field measurements and micromechanical modeling. Mech Mater 42:275–292

    Article  Google Scholar 

  32. Schmid E, Boas W (1951) Plasticity of crystals. Springer, New York

    Google Scholar 

  33. Schwartz J, Fandeur O, Rey C (2010) Fatigue crack initiation modelling of 316LN steel based on non local plasticity theory. Proc Eng 2(1):1353–1362

    Article  Google Scholar 

  34. St-Pierre L, Héripré E, Dexet M, Crépin J, Bertolino G, Bilger N (2008) 3D simulations of microstructure and comparison with experimental microstructure coming from O.I.M analysis. Int J Plast 24(9):1516–1532

    Article  Google Scholar 

  35. Zeghadi A (2007) N’guyen, F., Forest, S., Gourgues, A.F., Bouaziz, O.: ensemble averaging stress–strain fields in polycrystalline aggregates with a constrained surface microstructure—part 1: anisotropic elastic behaviour. Philos Mag 87(8–9):1401–1424

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique Aubin.

Appendices

Appendix A: Crystal orientations of both sides of the sample

See Table 4.

Table 4 Crystal orientations of the front (left) and back (right) sides of the sample

Appendix B: Schmid factor of each grain of both sides of the sample

See Table 5.

Table 5 Schmid factor of each grain of the front (left) and back (right) sides of the sample

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chow, W., Solas, D., Puel, G. et al. Development of an in situ method for measuring elastic and total strain fields at the grain scale with an estimation of accuracy. J Mater Sci 51, 1234–1250 (2016). https://doi.org/10.1007/s10853-015-9359-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9359-4

Keywords

Navigation