Skip to main content
Log in

Functional composites with core–shell fillers: I. Particle synthesis and thermal conductivity measurements

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Filled epoxy composites are broadly used in electronic and power devices as an electrical insulation. It is of importance to achieve efficient heat dissipation in such devices due to fact that thermal properties have a strong influence on their proper operation. For this reason, the modification of standard filler materials, such as silica or alumina, can give a promising solution. In this work, a novel core–shell material has been proposed and manufactured by means of a carbothermal reduction and nitridation process. The obtained fillers are made of a standard material which is covered by the high thermally conductive shell. The synthesized fillers were characterized by means of X-ray diffraction, and scanning electron microscopy coupled with elemental analysis. The composite samples based on epoxy resin filled with the manufactured core–shell fillers have been investigated in order to determine their effective thermal conductivity. The obtained composite samples exhibited a significant improvement in the thermal conductivity, represented by a 63 % relative increase. The obtained results show the potential for the novel core–shell fillers to be applied for the electrical insulation with the enhanced thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Filippakou MP, Karagiannopoulos CG, Agoris DP, Bourkas PD (2001) Electrical contact overheating under short-circuit currents. Electr Power Syst Res 57:141–147. doi:10.1016/S0378-7796(01)00081-5

    Article  Google Scholar 

  2. Wong Y, Lo K, Shin F (2001) Electrical and thermal properties of composite of liquid crystalline polymer filled with carbon black. J Appl Polym Sci 82:1549–1555. doi:10.1002/app.1993

    Article  Google Scholar 

  3. Droval G, Feller J-F, Salagnac P, Glouannec P (2006) Thermal conductivity enhancement of electrically insulating syndiotactic poly(styrene) matrix for diphasic conductive polymer composites. Polym Adv Technol 17:732–745. doi:10.1002/pat.777

    Article  Google Scholar 

  4. Garrett KW, Rosenberg HM (1974) The thermal conductivity of epoxy-resin/powder composite materials. J Phys Appl Phys 7:1247–1258. doi:10.1088/0022-3727/7/9/311

    Article  Google Scholar 

  5. Ishida H, Rimdusit S (1998) Very high thermal conductivity obtained by boron nitride-filled polybenzoxazine. Thermochim Acta 320:177–186. doi:10.1016/S0040-6031(98)00463-8

    Article  Google Scholar 

  6. Yung KC, Liem H (2007) Enhanced thermal conductivity of boron nitride epoxy-matrix composite through multi-modal particle size mixing. J Appl Polym Sci 106:3587–3591. doi:10.1002/app.27027

    Article  Google Scholar 

  7. Slack GA (1979) The thermal conductivity of nonmetallic crystals. Solid State Phys 34:1–71

    Google Scholar 

  8. Wong CP (2010) Nano-bio-electronic, photonic and MEMS packaging. Springer, Boston

    Book  Google Scholar 

  9. Tritt TM (2004) Thermal conductivity theory, properties, and applications. Kluwer Academic/Plenum Publishers, New York, Boston, MA

    Book  Google Scholar 

  10. Hu M, Keblinski P, Schelling P (2009) Kapitza conductance of silicon–amorphous polyethylene interfaces by molecular dynamics simulations. Phys Rev B. doi:10.1103/PhysRevB.79.104305

    Google Scholar 

  11. Gaska K, Kmita G, Rybak A et al (2015) Magnetic-aligned, magnetite-filled epoxy composites with enhanced thermal conductivity. J Mater Sci. doi:10.1007/s10853-014-8809-8

    Google Scholar 

  12. Michalik A, Kmita G, Kazmierczak T, Sekula R (2011) An insulating composite material with a polymer matrix. WO2011057782. http://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&II=0&ND=3&adjacent=true&locale=en_EP&FT=D&date=20110519&CC=WO&NR=2011057782A2&KC=A2

  13. Shen Y, Lin YH, Nan C-W (2007) Interfacial effect on dielectric properties of polymer nanocomposites filled with core/shell-structured particles. Adv Funct Mater 17:2405–2410. doi:10.1002/adfm.200700200

    Article  Google Scholar 

  14. Huang L, Zhu P, Li G et al (2014) Core–shell SiO2@RGO hybrids for epoxy composites with low percolation threshold and enhanced thermo-mechanical properties. J Mater Chem A 2:18246–18255. doi:10.1039/C4TA03702B

    Article  Google Scholar 

  15. Lee E-S, Lee S-M, Shanefield DJ, Cannon WR (2008) Enhanced thermal conductivity of polymer matrix composite via high solids loading of aluminum nitride in epoxy resin. J Am Ceram Soc 91:1169–1174. doi:10.1111/j.1551-2916.2008.02247.x

    Article  Google Scholar 

  16. Lee G, Park M, Kim J et al (2006) Enhanced thermal conductivity of polymer composites filled with hybrid filler. Compos Part Appl Sci Manuf 37:727–734. doi:10.1016/j.compositesa.2005.07.006

    Article  Google Scholar 

  17. Gaska K, Rybak A, Kapusta C et al (2015) Enhanced thermal conductivity of epoxy-matrix composites with hybrid fillers. Polym Adv Technol 26:26–31. doi:10.1002/pat.3414

    Article  Google Scholar 

  18. Zhou Y, Wang L, Zhang H et al (2012) Enhanced high thermal conductivity and low permittivity of polyimide based composites by core-shell Ag@SiO2 nanoparticle fillers. Appl Phys Lett 101:012903. doi:10.1063/1.4733324

    Article  Google Scholar 

  19. Qian R, Yu J, Wu C et al (2013) Alumina-coated graphene sheet hybrids for electrically insulating polymer composites with high thermal conductivity. RSC Adv 3:17373. doi:10.1039/c3ra42104j

    Article  Google Scholar 

  20. Zhi C, Bando Y, Terao T et al (2009) Boron nanotube-polymer composites: towards thermoconductive, electrically insulating polymeric composites with boron nitride nanotubes as fillers. Adv Funct Mater. doi:10.1002/adfm.200990050

    Google Scholar 

  21. Teng C-C, Ma C, Lu C et al (2011) Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites. Carbon 49:5107–5116. doi:10.1016/j.carbon.2011.06.095

    Article  Google Scholar 

  22. Yu A, Ramesh P, Sun X et al (2008) Enhanced thermal conductivity in a hybrid graphite nanoplatelet—carbon nanotube filler for epoxy composites. Adv Mater 20:4740–4744. doi:10.1002/adma.200800401

    Article  Google Scholar 

  23. Huang X, Iizuka T, Jiang P, Ohki Y (2012) Role of interface on the thermal conductivity of highly filled dielectric epoxy/AlN composites. J Phys Chem C 116:13629–13639. doi:10.1021/jp3026545

    Article  Google Scholar 

  24. Kuramoto N, Taniguchi H (1986) Fine powder of aluminum nitride, composition and sintered body thereof and processes for their production. US4618592. http://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&II=0&ND=3&adjacent=true&locale=en_EP&FT=D&date=19861021&CC=US&NR=4618592A&KC=A

  25. Riley FL (2004) Silicon nitride and related materials. J Am Ceram Soc 83:245–265. doi:10.1111/j.1151-2916.2000.tb01182.x

    Article  Google Scholar 

  26. Lefort P (2005) Mechanism of AlN formation through the carbothermal reduction of Al2O3 in a flowing N2 atmosphere. J Am Ceram Soc 76:2295–2299. doi:10.1111/j.1151-2916.1993.tb07767.x

    Article  Google Scholar 

  27. Ide T, Komeya K, Meguro T, Tatami J (2004) Synthesis of AlN powder by carbothermal reduction-nitridation of various Al2O3 powders with CaF2. J Am Ceram Soc 82:2993–2998. doi:10.1111/j.1151-2916.1999.tb02193.x

    Article  Google Scholar 

  28. Wang F, Jin G-Q, Guo X-Y (2006) Formation mechanism of Si3N4 nanowires via carbothermal reduction of carbonaceous silica xerogels. J Phys Chem B 110:14546–14549. doi:10.1021/jp0619282

    Article  Google Scholar 

  29. Arik H (2003) Synthesis of Si3N4 by the carbo-thermal reduction and nitridation of diatomite. J Eur Ceram Soc 23:2005–2014. doi:10.1016/S0955-2219(03)00038-4

    Article  Google Scholar 

  30. Wang MJ, Wada H (1991) Silicon nitride whisker synthesis by carbothermal reduction of silica. Mater Sci Forum 47:267–281. doi:10.4028/www.scientific.net/MSF.47.267

    Article  Google Scholar 

  31. Maldonado O (1992) Pulse method for simultaneous measurement of electric thermopower and heat conductivity at low temperatures. Cryogenics 32:908–912. doi:10.1016/0011-2275(92)90358-H

    Article  Google Scholar 

  32. Nath P, Chopra KL (1974) Experimental determination of the thermal conductivity of thin films. Thin Solid Films 18:29–37. doi:10.1016/0040-6090(73)90217-4

    Article  Google Scholar 

  33. Chopra KL, Nath P (1974) Thermal conductivity of ultrathin metal films in multilayer structures. J Appl Phys 45:1923–1925. doi:10.1063/1.1663521

    Article  Google Scholar 

  34. Turney JE, McGaughey AJH, Amon CH (2010) In-plane phonon transport in thin films. J Appl Phys 107:024317. doi:10.1063/1.3296394

    Article  Google Scholar 

  35. Volz S (2009) Thermal nanosystems and nanomaterials, topics in applied physics 118. Springer, Berlin. doi:10.1007/978-3-642-04258-4_1

    Book  Google Scholar 

  36. Bruggeman DAG (1935) The prediction of the thermal conductivity of heterogeneous mixtures. Ann Phys 24:636–664

    Article  Google Scholar 

  37. Nielsen LE (1974) The thermal and electrical conductivity of two-phase systems. Ind Eng Chem Fundam 13:17–20. doi:10.1021/i160049a004

    Article  Google Scholar 

  38. Cheng SC, Vachon RI (1969) The prediction of the thermal conductivity of two and three phase solid heterogeneous mixtures. Int J Heat Mass Transf 12:249–264. doi:10.1016/0017-9310(69)90009-X

    Article  Google Scholar 

  39. Progelhof RC, Throne JL (1976) Methods for predicting the thermal conductivity of composite systems: a review. Polym Eng Sci 16:615–625. doi:10.1002/pen.760160905

    Article  Google Scholar 

  40. Kumlutas D (2006) A numerical and experimental study on thermal conductivity of particle filled polymer composites. J Thermoplast Compos Mater 19:441–455. doi:10.1177/0892705706062203

    Article  Google Scholar 

  41. He H, Fu R, Han Y, Shen Y, Song X (2007) Thermal conductivity of ceramic particle filled polymer composites and theoretical predictions. J Mater Sci 42:6749–6754. doi:10.1007/s10853-006-1480-y

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support in the modification of the fillers provided by Mr. Meng Wang, Mr. Yutaka Fukunaga, and Mr. Yukihiro Kanechika from Tokuyama Corporation Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Rybak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rybak, A., Gaska, K. Functional composites with core–shell fillers: I. Particle synthesis and thermal conductivity measurements. J Mater Sci 50, 7779–7789 (2015). https://doi.org/10.1007/s10853-015-9349-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9349-6

Keywords