Abstract
Filled epoxy composites are broadly used in electronic and power devices as an electrical insulation. It is of importance to achieve efficient heat dissipation in such devices due to fact that thermal properties have a strong influence on their proper operation. For this reason, the modification of standard filler materials, such as silica or alumina, can give a promising solution. In this work, a novel core–shell material has been proposed and manufactured by means of a carbothermal reduction and nitridation process. The obtained fillers are made of a standard material which is covered by the high thermally conductive shell. The synthesized fillers were characterized by means of X-ray diffraction, and scanning electron microscopy coupled with elemental analysis. The composite samples based on epoxy resin filled with the manufactured core–shell fillers have been investigated in order to determine their effective thermal conductivity. The obtained composite samples exhibited a significant improvement in the thermal conductivity, represented by a 63 % relative increase. The obtained results show the potential for the novel core–shell fillers to be applied for the electrical insulation with the enhanced thermal conductivity.










Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Filippakou MP, Karagiannopoulos CG, Agoris DP, Bourkas PD (2001) Electrical contact overheating under short-circuit currents. Electr Power Syst Res 57:141–147. doi:10.1016/S0378-7796(01)00081-5
Wong Y, Lo K, Shin F (2001) Electrical and thermal properties of composite of liquid crystalline polymer filled with carbon black. J Appl Polym Sci 82:1549–1555. doi:10.1002/app.1993
Droval G, Feller J-F, Salagnac P, Glouannec P (2006) Thermal conductivity enhancement of electrically insulating syndiotactic poly(styrene) matrix for diphasic conductive polymer composites. Polym Adv Technol 17:732–745. doi:10.1002/pat.777
Garrett KW, Rosenberg HM (1974) The thermal conductivity of epoxy-resin/powder composite materials. J Phys Appl Phys 7:1247–1258. doi:10.1088/0022-3727/7/9/311
Ishida H, Rimdusit S (1998) Very high thermal conductivity obtained by boron nitride-filled polybenzoxazine. Thermochim Acta 320:177–186. doi:10.1016/S0040-6031(98)00463-8
Yung KC, Liem H (2007) Enhanced thermal conductivity of boron nitride epoxy-matrix composite through multi-modal particle size mixing. J Appl Polym Sci 106:3587–3591. doi:10.1002/app.27027
Slack GA (1979) The thermal conductivity of nonmetallic crystals. Solid State Phys 34:1–71
Wong CP (2010) Nano-bio-electronic, photonic and MEMS packaging. Springer, Boston
Tritt TM (2004) Thermal conductivity theory, properties, and applications. Kluwer Academic/Plenum Publishers, New York, Boston, MA
Hu M, Keblinski P, Schelling P (2009) Kapitza conductance of silicon–amorphous polyethylene interfaces by molecular dynamics simulations. Phys Rev B. doi:10.1103/PhysRevB.79.104305
Gaska K, Kmita G, Rybak A et al (2015) Magnetic-aligned, magnetite-filled epoxy composites with enhanced thermal conductivity. J Mater Sci. doi:10.1007/s10853-014-8809-8
Michalik A, Kmita G, Kazmierczak T, Sekula R (2011) An insulating composite material with a polymer matrix. WO2011057782. http://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&II=0&ND=3&adjacent=true&locale=en_EP&FT=D&date=20110519&CC=WO&NR=2011057782A2&KC=A2
Shen Y, Lin YH, Nan C-W (2007) Interfacial effect on dielectric properties of polymer nanocomposites filled with core/shell-structured particles. Adv Funct Mater 17:2405–2410. doi:10.1002/adfm.200700200
Huang L, Zhu P, Li G et al (2014) Core–shell SiO2@RGO hybrids for epoxy composites with low percolation threshold and enhanced thermo-mechanical properties. J Mater Chem A 2:18246–18255. doi:10.1039/C4TA03702B
Lee E-S, Lee S-M, Shanefield DJ, Cannon WR (2008) Enhanced thermal conductivity of polymer matrix composite via high solids loading of aluminum nitride in epoxy resin. J Am Ceram Soc 91:1169–1174. doi:10.1111/j.1551-2916.2008.02247.x
Lee G, Park M, Kim J et al (2006) Enhanced thermal conductivity of polymer composites filled with hybrid filler. Compos Part Appl Sci Manuf 37:727–734. doi:10.1016/j.compositesa.2005.07.006
Gaska K, Rybak A, Kapusta C et al (2015) Enhanced thermal conductivity of epoxy-matrix composites with hybrid fillers. Polym Adv Technol 26:26–31. doi:10.1002/pat.3414
Zhou Y, Wang L, Zhang H et al (2012) Enhanced high thermal conductivity and low permittivity of polyimide based composites by core-shell Ag@SiO2 nanoparticle fillers. Appl Phys Lett 101:012903. doi:10.1063/1.4733324
Qian R, Yu J, Wu C et al (2013) Alumina-coated graphene sheet hybrids for electrically insulating polymer composites with high thermal conductivity. RSC Adv 3:17373. doi:10.1039/c3ra42104j
Zhi C, Bando Y, Terao T et al (2009) Boron nanotube-polymer composites: towards thermoconductive, electrically insulating polymeric composites with boron nitride nanotubes as fillers. Adv Funct Mater. doi:10.1002/adfm.200990050
Teng C-C, Ma C, Lu C et al (2011) Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites. Carbon 49:5107–5116. doi:10.1016/j.carbon.2011.06.095
Yu A, Ramesh P, Sun X et al (2008) Enhanced thermal conductivity in a hybrid graphite nanoplatelet—carbon nanotube filler for epoxy composites. Adv Mater 20:4740–4744. doi:10.1002/adma.200800401
Huang X, Iizuka T, Jiang P, Ohki Y (2012) Role of interface on the thermal conductivity of highly filled dielectric epoxy/AlN composites. J Phys Chem C 116:13629–13639. doi:10.1021/jp3026545
Kuramoto N, Taniguchi H (1986) Fine powder of aluminum nitride, composition and sintered body thereof and processes for their production. US4618592. http://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&II=0&ND=3&adjacent=true&locale=en_EP&FT=D&date=19861021&CC=US&NR=4618592A&KC=A
Riley FL (2004) Silicon nitride and related materials. J Am Ceram Soc 83:245–265. doi:10.1111/j.1151-2916.2000.tb01182.x
Lefort P (2005) Mechanism of AlN formation through the carbothermal reduction of Al2O3 in a flowing N2 atmosphere. J Am Ceram Soc 76:2295–2299. doi:10.1111/j.1151-2916.1993.tb07767.x
Ide T, Komeya K, Meguro T, Tatami J (2004) Synthesis of AlN powder by carbothermal reduction-nitridation of various Al2O3 powders with CaF2. J Am Ceram Soc 82:2993–2998. doi:10.1111/j.1151-2916.1999.tb02193.x
Wang F, Jin G-Q, Guo X-Y (2006) Formation mechanism of Si3N4 nanowires via carbothermal reduction of carbonaceous silica xerogels. J Phys Chem B 110:14546–14549. doi:10.1021/jp0619282
Arik H (2003) Synthesis of Si3N4 by the carbo-thermal reduction and nitridation of diatomite. J Eur Ceram Soc 23:2005–2014. doi:10.1016/S0955-2219(03)00038-4
Wang MJ, Wada H (1991) Silicon nitride whisker synthesis by carbothermal reduction of silica. Mater Sci Forum 47:267–281. doi:10.4028/www.scientific.net/MSF.47.267
Maldonado O (1992) Pulse method for simultaneous measurement of electric thermopower and heat conductivity at low temperatures. Cryogenics 32:908–912. doi:10.1016/0011-2275(92)90358-H
Nath P, Chopra KL (1974) Experimental determination of the thermal conductivity of thin films. Thin Solid Films 18:29–37. doi:10.1016/0040-6090(73)90217-4
Chopra KL, Nath P (1974) Thermal conductivity of ultrathin metal films in multilayer structures. J Appl Phys 45:1923–1925. doi:10.1063/1.1663521
Turney JE, McGaughey AJH, Amon CH (2010) In-plane phonon transport in thin films. J Appl Phys 107:024317. doi:10.1063/1.3296394
Volz S (2009) Thermal nanosystems and nanomaterials, topics in applied physics 118. Springer, Berlin. doi:10.1007/978-3-642-04258-4_1
Bruggeman DAG (1935) The prediction of the thermal conductivity of heterogeneous mixtures. Ann Phys 24:636–664
Nielsen LE (1974) The thermal and electrical conductivity of two-phase systems. Ind Eng Chem Fundam 13:17–20. doi:10.1021/i160049a004
Cheng SC, Vachon RI (1969) The prediction of the thermal conductivity of two and three phase solid heterogeneous mixtures. Int J Heat Mass Transf 12:249–264. doi:10.1016/0017-9310(69)90009-X
Progelhof RC, Throne JL (1976) Methods for predicting the thermal conductivity of composite systems: a review. Polym Eng Sci 16:615–625. doi:10.1002/pen.760160905
Kumlutas D (2006) A numerical and experimental study on thermal conductivity of particle filled polymer composites. J Thermoplast Compos Mater 19:441–455. doi:10.1177/0892705706062203
He H, Fu R, Han Y, Shen Y, Song X (2007) Thermal conductivity of ceramic particle filled polymer composites and theoretical predictions. J Mater Sci 42:6749–6754. doi:10.1007/s10853-006-1480-y
Acknowledgements
The authors gratefully acknowledge the support in the modification of the fillers provided by Mr. Meng Wang, Mr. Yutaka Fukunaga, and Mr. Yukihiro Kanechika from Tokuyama Corporation Japan.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Rybak, A., Gaska, K. Functional composites with core–shell fillers: I. Particle synthesis and thermal conductivity measurements. J Mater Sci 50, 7779–7789 (2015). https://doi.org/10.1007/s10853-015-9349-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10853-015-9349-6

