Skip to main content

Advertisement

Log in

Organically modified layered zinc phenylphosphonate reinforced stereocomplex-type poly(lactic acid) nanocomposites with highly enhanced mechanical properties and degradability

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, stereocomplex-type poly(l-lactide) (SC-PLA)/organo-modified layered zinc phenylphosphonate (m-PPZn) nanocomposites were synthesized and characterized as a new material for green material usages. A long-chain oleylamine was selected to modify layered zinc phenylphosphonate (PPZn). The structural arrangement of the original and oleylamine-modified PPZn was determined using wide-angle X-ray diffraction (WAXD), and m-PPZn exhibited a large interlayer spacing of 30.3 Å. The correlation length of PPZn derived using several orders of peak profiles decreased with oleylamine addition, suggesting that the structural arrangement of m-PPZn exhibits less perfect alignment. The mechanical properties, structure, and morphology of the SC-PLA/m-PPZn nanocomposites were characterized with dynamic mechanical analysis, WAXD, and transmission electron microscopy (TEM). Both WAXD and TEM results demonstrate that most of the layered materials of partial delamination are randomly dispersed in the SC-PLA matrix. Mechanical properties of the fabricated 1 wt% SC-PLA/m-PPZn nanocomposites show significant enhancements in the storage modulus when compared to SC-PLA matrix. The biodegradability of SC-PLA/m-PPZn nanocomposites was studied with Trizma buffer solution containing proteinase K. It has been shown that the SC-PLA/m-PPZn nanocomposites exhibit a much higher disintegration rate than that of the SC-PLA matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864

    Article  Google Scholar 

  2. Penning JP, Dijkstra H, Pennings AJ (1993) Preparation and properties of absorbable fibres from l-lactide copolymers. Polymer 34:942–951

    Article  Google Scholar 

  3. Pluta M, Galeski A (2007) Plastic deformation of amorphous poly(l/dl-lactide): structure evolution and physical properties. Biomacromolecules 8:1836–1843

    Article  Google Scholar 

  4. Lee JH, Park TG, Park HS, Lee DS, Lee YK, Yoon SC, Nam JD (2003) Thermal and mechanical characteristics of poly(l-lactic acid) nanocomposite scaffold. Biomaterials 24:2773–2778

    Article  Google Scholar 

  5. Grijpma DW, Pennings AJ (1994) (Co) polymers of l-lactide, 1. Synthesis, thermal properties and hydrolytic degradation. Macromol Chem Phys 195:1633–1647

    Article  Google Scholar 

  6. Ikada Y, Jamshidi K, Tsuji H, Hyon SH (1987) Stereocomplex formation between enantiomeric poly(lactides). Macromolecules 20:904–906

    Article  Google Scholar 

  7. Tsuji H, Ikada Y, Hyon SH, Kimura Y, Kitao T (1994) Stereocomplex formation between enantiomeric poly(lactic acid). VIII. Complex fibers spun from mixed solution of poly(d-lactic acid) and poly(l-lactic acid). J Appl Polym Sci 51:337–344

    Article  Google Scholar 

  8. Tsuji H (2005) Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol Biosci 5:569–597

    Article  Google Scholar 

  9. Chen YA, Wu TM (2014) Crystallization kinetics of poly(1,4-butylene adipate) with stereocomplexed poly(lactic acid) serving as a nucleation agent. Ind Eng Chem Res 53:16689–16695

    Article  Google Scholar 

  10. Feijoo JL, Cabedo L, Giménez E, Lagaron JM, Saura JJ (2005) Development of amorphous PLA-montmorillonite nanocomposites. J Mater Sci 40:1785–1788

    Article  Google Scholar 

  11. Ray SS, Okamoto M (2003) Biodegradable polylactide and its nanocomposites: opening a new dimension for plastics and composites. Macromol Rapid Commun 24:815–840

    Article  Google Scholar 

  12. Neppalli R, Causin V, Marega C, Modesti M, Adhikari R, Scholtyssek S, Ray SS, Marigo A (2014) The effect of different clays on the structure, morphology and degradation behavior of poly(lactic acid). Appl Clay Sci 87:278–284

    Article  Google Scholar 

  13. Chiang MF, Chen EC, Wu TM (2012) Preparation, mechanical properties and thermal stability of poly(l-lactide)/γ-polyglutamate-modified layered double hydroxide nanocomposites. Polym Degrad Stab 97:995–1001

    Article  Google Scholar 

  14. Chiang MF, Wu TM (2010) Synthesis and characterization of biodegradable poly(l-lactide)/layered double hydroxide nanocomposites. Compos Sci Technol 70:110–115

    Article  Google Scholar 

  15. Li Y, Han C, Zhang X, Xu K, Bian J, Dong L (2014) Poly(l-lactide)/poly(d-lactide)/clay nanocomposites: enhanced dispersion, crystallization, mechanical properties, and hydrolytic degradation. Polym Eng Sci 54:914–924

    Article  Google Scholar 

  16. Re GL, Benali S, Habibi Y, Raquez JM, Dubois P (2014) Stereocomplexed PLA nanocomposites: from in situ polymerization to materials properties. Eur Polym J 54:138–150

    Article  Google Scholar 

  17. Lonkar SP, Morlat-Therias S, Caperaa N, Leroux F, Gardette JL, Singh RP (2009) Preparation and nonisothermal crystallization behavior of polypropylene/layered double hydroxide nanocomposites. Polymer 50:1505–1515

    Article  Google Scholar 

  18. Wu TM, Wu CY (2006) Biodegradable poly(lactic acid)/chitosan-modified montmorillonite nanocomposites: preparation and characterization. Polym Degrad Stab 91:2198–2204

    Article  Google Scholar 

  19. Wang S, Han C, Bian J, Han L, Wang X, Dong L (2011) Morphology, crystallization and enzymatic hydrolysis of poly(l-lactide) nucleated using layered metal phosphonates. Polym Int 60:284–295

    Article  Google Scholar 

  20. He L, Sun J, Wang X, Fan X, Zhao Q, Cai L, Song R, Ma Z, Huang W (2012) Unzipped multiwalled carbon nanotubes-incorporated poly(l-lactide) nanocomposites with enhanced interface and hydrolytic degradation. Mater Chem Phys 134:1059–1066

    Article  Google Scholar 

  21. Pan P, Liang Z, Cao A, Inoue Y (2009) Layered metal phosphonate reinforced poly(l-lactide) composites with a highly enhanced crystallization rate. ACS Appl Mater Interface 1:402–411

    Article  Google Scholar 

  22. Tsuboi T, Katayama H, Itoh T (2013) Crystallization behavior of poly(vinylidene fluoride) composites containing zinc phenylphosphonate. Polym Eng Sci 2013(53):843–848

    Article  Google Scholar 

  23. Xu T, Wang Y, He D, Xu Y, Li Q, Shen C (2014) Nucleation effect of layered metal phosphonate on crystallization of isotactic polypropylene. Polym Test 34:131–139

    Article  Google Scholar 

  24. Yu F, Pan P, Nakamura N, Inoue Y (2011) Nucleation effect of layered metal phosphonate on crystallization of bacterial Poly[(3-hydroxybutyrate)-co-(3-hydroxyhexanoate)]. Macromol Mater Eng 296:103–112

    Article  Google Scholar 

  25. Wu N, Wang H (2013) Effect of zinc phenylphosphonate on the crystallization behavior of poly(l-lactide). J Appl Polym Sci 130:2744–2752

    Article  Google Scholar 

  26. Cheetham AK, Férey G, Loiseau T (1999) Open-framework inorganic materials. Angew Chem Int Ed 38:3268–3292

    Article  Google Scholar 

  27. Clearfield A (1998) Organically pillared micro- and mesoporous materials. Chem Mater 10:2801–2810

    Article  Google Scholar 

  28. Dines MB, DiGiacomo PM (1981) Derivatized lamellar phosphates and phosphonates of M(IV) Ions. Inorg Chem 20:92–97

    Article  Google Scholar 

  29. Alberti G, Costantino U, Allulli S, Tomassini N (1978) Crystalline Zr(R-PO3)2 and Zr(R-OPO3)2 compounds (R = organic radical): a new class of materials having layered structure of the zirconium phosphate type. J Inorg Nucl Chem 40:1113–1117

    Article  Google Scholar 

  30. Cao G, Lee H, Lynch VM, Mallouk TE (1988) Synthesis and structural characterization of a homologous series of divalent-metal phosphonates, MII(O3PR)–H2O and MII (HO3PR). Inorg Chem 27:2781–2785

    Article  Google Scholar 

  31. Martin KJ, Squattrito PJ, Clearfield A (1989) The crystal and molecular structure of zinc phenylphosphonate. Inorg Chim Acta 155:7–9

    Article  Google Scholar 

  32. Poojary DM, Clearfield A (1995) Coordinative intercalation of alkylamines into layered zinc phenylphosphonate. Crystal structures from X-ray powder diffraction data. J Am Chem Soc 117:11278–11284

    Article  Google Scholar 

  33. Zhang Y, Scott KJ, Clearfield A (1995) Intercalation of alkylamines into dehydrated and hydrated phenylphosphonates. J Mater Chem 5:315–318

    Article  Google Scholar 

  34. Mourdikoudis S, Liz-Marzán LM (2013) Oleylamine in nanoparticle synthesis. Chem Mater 25:1465–1476

    Article  Google Scholar 

  35. Borges J, Ribeiro JA, Pereira EM, Carreira CA, Pereira CM, Silva F (2001) Preparation and characterization of DNA films using oleylamine modified Au surfaces. J Colloid Interface Sci 358:626–634

    Article  Google Scholar 

  36. Song SY, Ma JF, Yang J, Cao MH, Li KC (2005) Selected-Control Synthesis of Metal Phosphonate Nanoparticles and Nanorods. Inorg Chem 44:2140–2142

    Article  Google Scholar 

  37. Hosemann R, Hindeleh AM (1995) Structure of crystalline and paracrystalline condensed matter. J Macromol Sci 34:327–356

    Article  Google Scholar 

  38. Wu TM, Blackwell J, Chvalun SN (1995) Determination of the axial correlation lengths and paracrystalline distortion for aromatic copolyimides of random monomer sequence. Macromolecules 28:7349–7354

    Article  Google Scholar 

  39. Okihara T, Tsuji M, Kawaguchi A, Katayama KI, Tsuji H, Hyon SH, Ikada Y (1991) Crystal structure of stereocomplex of poly(l-lactide) and poly(d-lactide). J Macromol Sci B30:119–140

    Article  Google Scholar 

  40. Zhang J, Sato H, Tsuji H, Noda I, Ozaki Y (2005) Differences in the CH3···O = C interactions Aaong ply(l-lactide), ply(l-lactide)/ply(d-lactide) stereocomplex, and poly(3-hydroxybutyrate) studied by infrared spectroscopy. J Mol Struct 735:249–257

    Article  Google Scholar 

  41. Kumagai Y, Doi Y (1992) Enzymatic degradation and morphologies of binary blends of microbial poly(3-hydroxy butyrate) with poly(ε-caprolactone), poly(1,4-butylene adipate and poly(vinyl acetate). Polym Degrad Stab 36:241–248

    Article  Google Scholar 

  42. Tokiwa Y, Calabia B, Ugwu C, Aiba S (2009) Biodegradability of Plastics. Int J Mol Sci 10:3722–3742

    Article  Google Scholar 

  43. Numata K, Finne-Wistrand A, Albertsson AC, Doi Y, Abe H (2008) Enzymatic degradation of monolayer for poly(lactide) revealed by real-time atomic force microscopy: effects of stereochemical structure, molecular weight, and molecular branches on hydrolysis rates. Biomacromolecules 9:2180–2185

    Article  Google Scholar 

  44. Bikiaris DN (2013) Nanocomposites of aliphatic polyesters: an overview of the effect of different nanofillers on enzymatic hydrolysis and biodegradation of polyesters. Polym Degrad Stab 98:1908–1928

    Article  Google Scholar 

  45. Eili M, Shameli K, Ibrahim NA, Yunus WMZW (2012) Degradability enhancement of poly(lactic acid) by stearate-Zn3Al LDH nanolayers. Int J Mol Sci 13:7938–7951

    Article  Google Scholar 

  46. Ma F, Lu X, Wang Z, Sun Z, Zhang F, Zheng Y (2011) Nanocomposites of poly(l-lactide) and surface modified magnesia nanoparticles: fabrication, mechanical property and biodegradability. J Phys Chem Solids 72:111–116

    Article  Google Scholar 

  47. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641

    Article  Google Scholar 

  48. Ray SS, Yamada K, Okamoto M, Ueda K (2003) New polylactide-layered silicate nanocomposites. 2. Concurrent improvements of material properties, biodegradability and melt rheology. Polymer 44:857–866

    Article  Google Scholar 

Download references

Acknowledgements

The financial support provided by National Science Council through the project NSC 102-2212-E-005-093 is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzong-Ming Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YA., Chen, EC. & Wu, TM. Organically modified layered zinc phenylphosphonate reinforced stereocomplex-type poly(lactic acid) nanocomposites with highly enhanced mechanical properties and degradability. J Mater Sci 50, 7770–7778 (2015). https://doi.org/10.1007/s10853-015-9348-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9348-7

Keywords

Profiles

  1. Tzong-Ming Wu