Skip to main content

Surface residual stress in soda-lime glass evaluated using instrumented spherical indentation testing


Instrumented spherical indentation testing is proposed as a non-destructive way to evaluate surface residual stress in soda-lime glass. 10 μm-deep indentations with a spherical indenter of 250 μm radius do not reduce the strength of 3.5-mm-thick soda-lime glass as measured in four-point bending tests. We find good linearity between the compressive surface residual stress and the force difference at maximum indentation depth in the indentation force–depth curve, while hardness as measured by instrumented spherical indentation testing is independent of compressive surface residual stress introduced by bending and strengthening heat treatment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Hosford WF (2010) Mechanical behavior of materials, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  2. 2.

    ASTM C1048-el12 (2012) Standard specification for heat-strengthened and fully tempered flat glass

  3. 3.

    De Jong B, Glass H-JA, Biekert E, Davis H (1989) Ullmann’s encyclopedia of industrial chemistry. VCH Verlagsgesellschaft mbH, Weinheim

    Google Scholar 

  4. 4.

    Jang JI (2009) Estimation of residual stress by instrumented indentation: a review. J Ceram Process Res 10(3):391–400

    Google Scholar 

  5. 5.

    Lafontaine WR, Paszkiet CA, Korhonen MA, Li CY (1991) Residual-stress measurements of thin aluminum metallizations by continuous indentation and X-ray stress measurement techniques. J Mater Res 6(10):2084–2090

    Article  Google Scholar 

  6. 6.

    Aben H, Ainola L, Anton J (2000) Integrated photoelasticity for nondestructive residual stress measurement in glass. Opt Lasers Eng 33(1):49–64

    Article  Google Scholar 

  7. 7.

    Marshall D, Lawn B (1977) An indentation technique for measuring stresses in tempered glass surfaces. J Am Ceram Soc 60(1–2):86–87

    Article  Google Scholar 

  8. 8.

    Zeng K, Rowcliffe D (1994) Experimental measurement of residual stress field around sharp indentation in glass. J Am Ceram Soc 77(2):524–530

    Article  Google Scholar 

  9. 9.

    Bisrat Y, Roberts SG (2000) Residual stress measurement by Hertzian indentation. Mater Sci Eng A 288(2):148–153

    Article  Google Scholar 

  10. 10.

    Tandon R (2007) A technique for measuring stresses in small spatial regions using cube-corner indentation: application to tempered glass plates. J Eur Ceram Soc 27(6):2407–2414

    Article  Google Scholar 

  11. 11.

    Tandon R, Buchheit TE (2007) Use of cube-corner nano-indentation crack length measurements to estimate residual stresses over small spatial dimensions. J Am Ceram Soc 90(2):502–508

    Article  Google Scholar 

  12. 12.

    Kim JY, Kang SK, Lee JJ, Jang JI, Lee YH, Kwon D (2007) Influence of surface-roughness on indentation size effect. Acta Mater 55(10):3555–3562

    Article  Google Scholar 

  13. 13.

    Kim JY, Kang SK, Greer JR, Kwon D (2008) Evaluating plastic flow properties by characterizing indentation size effect using a sharp indenter. Acta Mater 56(14):3338–3343

    Article  Google Scholar 

  14. 14.

    Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583

    Article  Google Scholar 

  15. 15.

    Doerner MF, Nix WD (1986) A method for interpreting the data from depth-sensing indentation instruments. J Mater Res 1(4):601–609

    Article  Google Scholar 

  16. 16.

    Ciavarella M, Hills DA (1999) The influence of the indenter tip-radius on indentation testing of brittle materials. J Eur Ceram Soc 19(2):239–245

    Article  Google Scholar 

  17. 17.

    ASTM C1499–09 (2013) Standard test methods for strength of glass by flexural strength of advanced ceramics at ambient temperature. ASTM International, West Conshohocken

    Google Scholar 

  18. 18.

    Fett T, Rizzi G, Guin JP, Wiederhorn SM (2007) Ring-on-ring strength measurements on rectangular glass slides. J Mater Sci 42(1):393–395. doi:10.1007/s10853-006-1102-8

    Article  Google Scholar 

  19. 19.

    ASTM C-158-02 (2012) Standard test methods for strength of glass by flexure (determination of modulus of rupture). ASTM, West Conshohocken

    Google Scholar 

  20. 20.

    Quinn GD, Morrell R (1991) Design-data for engineering ceramics—a review of the flexure test. J Am Ceram Soc 74(9):2037–2066

    Article  Google Scholar 

  21. 21.

    Cai H, Kalceff SMA, Lawn BR (1994) Deformation and fracture of mica-containing glass-ceramics in Hertzian contacts. J Mater Res 9(03):762–770

    Article  Google Scholar 

  22. 22.

    Kim JY, Lee KW, Lee JS, Kwon D (2006) Determination of tensile properties by instrumented indentation technique: representative stress and strain approach. Surf Coat Tech 201(7):4278–4283

    Article  Google Scholar 

  23. 23.

    Sines G, Carlson R (1952) Hardness measurements for determination of residual stresses. ASTM Bull 180:357

    Google Scholar 

  24. 24.

    Frankel J, Abbate A, Scholz W (1993) The effect of residual stresses on hardness measurements. Exp Mech 33(2):164–168

    Article  Google Scholar 

  25. 25.

    Bai MW, Kato K, Umehara N, Miyake Y (2000) Nanoindentation and FEM study of the effect of internal stress on micro/nano mechanical property of thin CNx films. Thin Solid Films 377:138–147

    Article  Google Scholar 

  26. 26.

    Sneddon IN (1965) The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3(1):47–57

    Article  Google Scholar 

  27. 27.

    Pharr GM, Bolshakov A (2002) Understanding nanoindentation unloading curves. J Mater Res 17(10):2660–2671

    Article  Google Scholar 

  28. 28.

    Lafontaine WR, Yost B, Li CY (1990) Effect of residual-stress and adhesion on the hardness of copper-films deposited on silicon. J Mater Res 5(4):776–783

    Article  Google Scholar 

  29. 29.

    Zagrebelny AV, Carter CB (1997) Indentation of strained silicate-glass films on alumina substrates. Scripta Mater 37(12):1869–1875

    Article  Google Scholar 

  30. 30.

    Doerner MF, Gardner DS, Nix WD (1986) Plastic properties of thin films on substrates as measured by submicron indentation hardness and substrate curvature techniques. J Mater Res 1(6):845–851

    Article  Google Scholar 

  31. 31.

    Tsui T, Oliver W, Pharr G (1996) Influences of stress on the measurement of mechanical properties using nanoindentation: part I. Experimental studies in an aluminum alloy. J Mater Res 11(03):752–759

    Article  Google Scholar 

  32. 32.

    Gardon R (1980) Thermal tempering of glass. Glass Sci Technol 5:145–216

    Article  Google Scholar 

  33. 33.

    Lee Y-H, Kwon D (2004) Estimation of biaxial surface stress by instrumented indentation with sharp indenters. Acta Mater 52(6):1555–1563

    Article  Google Scholar 

  34. 34.

    Suresh S, Giannakopoulos AE (1998) A new method for estimating residual stresses by instrumented sharp indentation. Acta Mater 46(16):5755–5767

    Article  Google Scholar 

Download references


This work was supported by the Human Resource Training Program for Regional Innovation and Creativity through the Ministry of Education and National Research Foundation of Korea NRF-2014H1C1A1073051), and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2014R1A1A2058799).

Author information



Corresponding author

Correspondence to Ju-Young Kim.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahn, Sm., Park, SY., Kim, YC. et al. Surface residual stress in soda-lime glass evaluated using instrumented spherical indentation testing. J Mater Sci 50, 7752–7759 (2015).

Download citation


  • Indentation Depth
  • Indentation Testing
  • Surface Residual Stress
  • Spherical Indenter
  • Indentation Force