Multifunctional metal and metal oxide hybrid nanomaterials for solar light photocatalyst and antibacterial applications

Abstract

While simple mixing of the multiple nanostructural components might not necessarily satisfy the multiple functional requirements, this research work showed that such structural complexity demanded both strategic structural design and deliberate fabrication methods. As such, nanosilver-hybridized WO3 nanofibers incorporating paramagnetic CoFe2O4 nanoparticles were for the first time fabricated following three aspects of morphological control–bulk crystallinity, fiber chemical compositions, and surface modifications. Experimentally, co-precipitation, eletrospinning, and photodeposition were employed to synthesize CoFe2O4 nanoparticles, generate magnetically recoverable solar light-active photocatalyst nanofibers, and decorate them with nanosilver, respectively. The successful synthetic steps represented a facile and scalable route to multifunctional nanocatalyst against waterborne pollutants with organic and microbial constituents via WO3 photocatalytic system. The work extended to nanofiber fabrication using the NS LAB 500 Nanospider machine which allowed for the pilot-scale hybrid nanofibrous catalyst effective under natural sunlight towards elimination of a model waterborne pollutant.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Kumar S, Ahlawat W, Bhanjana G, Heydarifard S, Nazhad MM, Dilbaghi N (2014) Nanotechnology-based water treatment strategies. J Nanosci Nanotechnol 14(2):1838–1858

    Article  Google Scholar 

  2. 2.

    Agboola O, Maree J, Mbaya R (2014) Characterization and performance of nanofiltration membranes. Environ Chem Lett 12(2):241–255

    Article  Google Scholar 

  3. 3.

    Ghasemzadeh G, Momenpour M, Omidi F, Hosseini MR, Ahani M, Barzegari A (2014) Applications of nanomaterials in water treatment and environmental remediation. Front Env Sci Eng 8(4):471–482

    Article  Google Scholar 

  4. 4.

    Amin MT, Alazba AA, Manzoor U (2014) A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv Mater Sci Eng 2014:825910. doi:10.1155/2014/825910

  5. 5.

    Fane AG, Wang R, Hu MX (2015) Synthetic membranes for water purification: status and future. Angew Chem Int Ed 54(11):3368–3386

    Article  Google Scholar 

  6. 6.

    Ahmed FE, Lalia BS, Hashaikeh R (2015) A review on electrospinning for membrane fabrication: challenges and applications. Desalination 356:15–30

    Article  Google Scholar 

  7. 7.

    Liang XJ, Liu SJ, Wang S, Guo Y, Jiang SX (2014) Carbon-based sorbents: carbon nanotubes. J Chromatogr A 1357:53–67

    Article  Google Scholar 

  8. 8.

    Lim AP, Aris AZ (2014) A review on economically adsorbents on heavy metals removal in water and wastewater. Rev Environ Sci Bio Technol 13(2):163–181

    Article  Google Scholar 

  9. 9.

    Anlauf H (2007) Recent developments in centrifuge technology. Sep Purif Technol 58(2):242–246

    Article  Google Scholar 

  10. 10.

    Bekri-Abbes I, Bayoudh S, Baklouti M (2007) A technique for purifying wastewater with polymeric flocculant produced from waste plastic. Desalination 204(1–3):198–203

    Article  Google Scholar 

  11. 11.

    Maximova N, Dahl O (2006) Environmental implications of aggregation phenomena: current understanding. Curr Opin Colloid Interface Sci 11(4):246–266

    Article  Google Scholar 

  12. 12.

    Cincinelli A, Martellini T, Coppini E, Fibbi D, Katsoyiannis A (2015) Nanotechnologies for removal of pharmaceuticals and personal care products from water and wastewater. A review. J Nanosci Nanotechnol 15(5):3333–3347

    Article  Google Scholar 

  13. 13.

    Srisitthiratkul C, Yaipimai W, Intasanta V (2012) Environmental remediation and superhydrophilicity of ultrafine antibacterial tungsten oxide-based nanofibers under visible light source. Appl Surf Sci 259:349–355

    Article  Google Scholar 

  14. 14.

    Pongsorrarith V, Srisitthiratkul C, Laohhasurayotin K, Intasanta N (2012) Solution- and air-recoverable photocatalytic nanofibers by facile and cost-effective electrospinning and co-precipitation processes. Mater Lett 67(1):1–4

    Article  Google Scholar 

  15. 15.

    Srisitthiratkul C, Pongsorrarith V, Intasanta N (2011) The potential use of nanosilver-decorated titanium dioxide nanofibers for toxin decomposition with antimicrobial and self-cleaning properties. Appl Surf Sci 257(21):8850–8856

    Article  Google Scholar 

  16. 16.

    Chen HH, Nanayakkara CE, Grassian VH (2012) Titanium dioxide photocatalysis in atmospheric chemistry. Chem Rev 112(11):5919–5948

    Article  Google Scholar 

  17. 17.

    Gondal MA, Dastageer MA, Khalil A (2009) Synthesis of nano-WO3 and its catalytic activity for enhanced antimicrobial process for water purification using laser induced photo-catalysis. Catal Commun 11(3):214–219

    Article  Google Scholar 

  18. 18.

    Dong SY, Feng JL, Fan MH, Pi YQ, Hu LM, Han X et al (2015) Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review. RSC Adv 5(19):14610–14630

    Article  Google Scholar 

  19. 19.

    Leong SW, Razmjou A, Wang K, Hapgood K, Zhang XW, Wang HT (2014) TiO2 based photocatalytic membranes: a review. J Membr Sci 472:167–184

    Article  Google Scholar 

  20. 20.

    Nowotny J, Atanacio AJ, Bak T, Belova IV, Fiechter S, Ikuma Y et al (2014) Photosensitive oxide semiconductors for solar hydrogen fuel and water disinfection. Int Mater Rev 59(8):449–478

    Article  Google Scholar 

  21. 21.

    Rasalingam S, Peng R, Koodali RT (2014) Removal of hazardous pollutants from wastewaters: applications of TiO2–SiO2 mixed oxide materials. J Nanomater. doi:10.1155/2014/617405

    Google Scholar 

  22. 22.

    Abou El-Nour KMM, Eftaiha A, Al-Warthan A, Ammar RAA (2010) Synthesis and applications of silver nanoparticles. Arab J Chem 3(3):135–140

    Article  Google Scholar 

  23. 23.

    Ravindran A, Chandran P, Khan SS (2013) Biofunctionalized silver nanoparticles: advances and prospects. Colloid Surf B 105:342–352

    Article  Google Scholar 

  24. 24.

    Reidy B, Haase A, Luch A, Dawson KA, Lynch I (2013) Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials 6(6):2295–2350

    Article  Google Scholar 

  25. 25.

    Rizzello L, Cingolani R, Pompa PP (2013) Nanotechnology tools for antibacterial materials. Nanomedicine 8(5):807–821

    Article  Google Scholar 

  26. 26.

    Schluesener JK, Schluesener HJ (2013) Nanosilver: application and novel aspects of toxicology. Arch Toxicol 87(4):569–576

    Article  Google Scholar 

  27. 27.

    Latham AH, Williams ME (2008) Controlling transport and chemical functionality of magnetic nanoparticles. Acc Chem Res 41(3):411–420

    Article  Google Scholar 

  28. 28.

    Kharisov BI, Dias HVR, Kharissova OV, Vazquez A, Pena Y, Gomez I (2014) Solubilization, dispersion and stabilization of magnetic nanoparticles in water and non-aqueous solvents: recent trends. RSC Adv 4(85):45354–45381

    Article  Google Scholar 

  29. 29.

    Gul IH, Maqsood A (2008) Structural, magnetic and electrical properties of cobalt ferrites prepared by the sol-gel route. J Alloy Compd 465(1–2):227–231

    Article  Google Scholar 

  30. 30.

    Cuenya BR (2010) Synthesis and catalytic properties of metal nanoparticles: size, shape, support, composition, and oxidation state effects. Thin Solid Films 518(12):3127–3150

    Article  Google Scholar 

  31. 31.

    Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346

    Article  Google Scholar 

  32. 32.

    Alves AK, Berutti FA, Clemens FJ, Graule T, Bergmann CP (2009) Photocatalytic activity of titania fibers obtained by electrospinning. Mater Res Bull 44(2):312–317

    Article  Google Scholar 

  33. 33.

    Alves AK, Berutti FA, Bergmann CP (2009) Application of titania fibers obtained by electrospinning in photocatalytic degradation of methyl orange. J Environ Sci Health A 44(9):835–840

    Article  Google Scholar 

  34. 34.

    Lang LM, Wu D, Xu Z (2012) Controllable Fabrication of TiO2 1D-nano/micro structures: solid, hollow, and tube-in-tube fibers by electrospinning and the photocatalytic performance. Chem Eur J 18(34):10661–10668

    Article  Google Scholar 

  35. 35.

    Feng C, Khulbe KC, Matsuura T, Tabe S, Ismail AF (2013) Preparation and characterization of electro-spun nanofiber membranes and their possible applications in water treatment. Sep Purif Technol 102:118–135

    Article  Google Scholar 

  36. 36.

    Homaeigohar S, Elbahri M (2014) Nanocomposite electrospun nanofiber membranes for environmental remediation. Materials 7(2):1017–1045

    Article  Google Scholar 

  37. 37.

    Gibbons WT, Liu TH, Gaskell KJ, Jackson GS (2014) Characterization of palladium/copper/ceria electrospun fibers for water-gas shift catalysis. Appl Catal B 160:465–479

    Article  Google Scholar 

  38. 38.

    Yaipimai W, Intasanta V (2014) Fabrication of multifunctional nanofibers against broadspectrum biochemical hazard. Sci Adv Mater 6(3):448–458

    Article  Google Scholar 

  39. 39.

    Salas C, Nypelo T, Rodriguez-Abreu C, Carrillo C, Rojas OJ (2014) Nanocellulose properties and applications in colloids and interfaces. Curr Opin Colloid Interface Sci 19(5):383–396

    Article  Google Scholar 

  40. 40.

    Persano L, Camposeo A, Pisignano D (2015) Active polymer nanofibers for photonics, electronics, energy generation and micromechanics. Prog Polym Sci 43:48–95

    Article  Google Scholar 

  41. 41.

    Kang CS, Kim C, Son JT (2012) Synthesis of LiFePO4 nano-fibers for cathode materials by electrospinning process. J Ceram Process Res 13:S304–S307

    Google Scholar 

  42. 42.

    Kang CS, Son JT (2012) Synthesis and electrochemical properties of LiNi1/3Co1/3Mn1/3O2 cathode materials by electrospinning process. J Electroceram 29(4):235–239

    Article  Google Scholar 

  43. 43.

    Chang GH, Luo YL, Qin XY, Lu WB, Asiri AM, Al-Youbi AO et al (2012) Synthesis of Pt nanoparticles decorated 1,5-diaminoanthraquinone nanofibers and their application toward catalytic reduction of 4-nitrophenol. J Nanosci Nanotechnol 12(9):7075–7080

    Article  Google Scholar 

  44. 44.

    Bora T, Dutta J (2014) Applications of nanotechnology in wastewater treatment-a review. J Nanosci Nanotechnol 14(1):613–626

    Article  Google Scholar 

  45. 45.

    Dong ZP, Le XD, Li XL, Zhang W, Dong CX, Ma JT (2014) Silver nanoparticles immobilized on fibrous nano-silica as highly efficient and recyclable heterogeneous catalyst for reduction of 4-nitrophenol and 2-nitroaniline. Appl Catal B 158:129–135

    Article  Google Scholar 

  46. 46.

    Gupta SM, Tripathi M (2012) An overview of commonly used semiconductor nanoparticles in photocatalysis. High Energy Chem 46(1):1–9

    Article  Google Scholar 

  47. 47.

    Mortimer RJ (2011) Electrochromic materials. In: Clarke DR, Fratzl P (eds) Annual review of materials research, vol 41. Annual Review, Palo Alto, pp 241–268

    Google Scholar 

  48. 48.

    Gondal MA, Khalil A (2008) Rapid disinfection of E-coliform contaminated water using WO3 semiconductor catalyst by laser-induced photo-catalytic process. J Environ Sci Health A 43(5):488–494

    Article  Google Scholar 

  49. 49.

    Shim HS, Kim JW, Sung YE, Kim WB (2009) Electrochromic properties of tungsten oxide nanowires fabricated by electrospinning method. Sol Energy Mater Sol Cells 93(12):2062–2068

    Article  Google Scholar 

  50. 50.

    Senguttuvan TD, Srivastava V, Tawal JS, Mishra M, Srivastava S, Jain K (2010) Gas sensing properties of nanocrystalline tungsten oxide synthesized by acid precipitation method. Sens Actuator B 150(1):384–388

    Article  Google Scholar 

  51. 51.

    Lu XF, Wang C, Wei Y (2009) One-dimensional composite nanomaterials: synthesis by electrospinning and their applications. Small 5(21):2349–2370

    Article  Google Scholar 

  52. 52.

    Ayyappan S, Philip J, Raj B (2009) A facile method to control the size and magnetic properties of CoFe2O4 nanoparticles. Mater Chem Phys 115(2–3):712–717

    Article  Google Scholar 

  53. 53.

    Wang J, Deng T, Lin Y, Yang C, Zhan W (2008) Synthesis and characterization of CoFe2O4 magnetic particles prepared by co-precipitation method: effect of mixture procedures of initial solution. J Alloys Compd 450:532–539

    Article  Google Scholar 

  54. 54.

    Ayyappan S, Philip J, Raj B (2009) A facile method to control the size and magnetic properties of CoFe2O4 nanoparticles. Mater Chem Phys 115:712–717

    Article  Google Scholar 

  55. 55.

    Zhang S, Niu H, Cai Y, Zhao X, Shi Y (2010) Arsenite and arsenate adsorption on co precipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4. Chem Eng J 158:599–607

    Article  Google Scholar 

  56. 56.

    Luna LKD, Panning M, Grywna K, Pfefferle S, Drosten C (2007) Spectrum of viruses and atypical bacteria in intercontinental air travelers with symptoms of acute respiratory infection. J Infect Dis 195(5):675–679

    Article  Google Scholar 

  57. 57.

    Chauhan AJ, Inskip HM, Linaker CH, Smith S, Schreiber J, Johnston SL et al (2003) Personal exposure to nitrogen dioxide (NO2) and the severity of virus-induced asthma in children. Lancet 361(9373):1939–1944

    Article  Google Scholar 

  58. 58.

    Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145(1–2):83–96

    Article  Google Scholar 

  59. 59.

    Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12(5):1531–1551

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank DPST funding (Grant DPST2012) for financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Varol Intasanta.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yaipimai, W., Subjalearndee, N., Tumcharern, G. et al. Multifunctional metal and metal oxide hybrid nanomaterials for solar light photocatalyst and antibacterial applications. J Mater Sci 50, 7681–7697 (2015). https://doi.org/10.1007/s10853-015-9333-1

Download citation

Keywords

  • Methylene Blue
  • Photocatalytic Activity
  • CoFe2O4
  • Tungsten Oxide
  • CoFe2O4 Nanoparticles