Journal of Materials Science

, Volume 51, Issue 1, pp 438–448 | Cite as

Grain boundary segregation in Al–Mn electrodeposits prepared from ionic liquid

  • Ting-Yun Huang
  • Christopher J. Marvel
  • Patrick R. Cantwell
  • Martin P. Harmer
  • Christopher A. Schuh
50th Anniversary

Abstract

Among the various preparation methods for nanocrystalline alloys, ionic liquid electrodeposition at low temperature is of interest for its scalability and efficiency. To achieve nanostructures with stabilized structures, it is desirable to directly deposit alloys in which the grain boundaries are decorated with a segregated alloying element. Here a combination of atom-probe tomography and aberration-corrected scanning transmission electron microscopy are used to confirm that in Al–Mn nanocrystalline alloys deposited from an ionic liquid, Mn is slightly segregated at grain boundaries in the as-deposited condition. The apparent heat of grain boundary segregation is calculated to lie between 1100 and 1500 J mol−1, which aligns reasonably well with a value calculated using a Miedema-based segregation model, and which is also in line with a more refined CALPHAD-type estimation if it is assumed that the Al–Mn deposits are not fully equilibrated at the deposition temperature.

References

  1. 1.
    Qu N, Zhu D, Chan K, Lei W (2003) Pulse electrodeposition of nanocrystalline nickel using ultra narrow pulse width and high peak current density. Surf Coat Technol 168:123–128. doi:10.1016/S0257-8972(03)00014-8 CrossRefGoogle Scholar
  2. 2.
    Natter H, Hempelmann R (2008) Nanocrystalline metals prepared by electrodeposition. Zeitschrift für Phys Chemie 222:319–354. doi:10.1524/zpch.2008.222.2-3.319 CrossRefGoogle Scholar
  3. 3.
    Bicelli LP, Bozzini B, Mele C, D’Urzo L (2008) A review of nanostructural aspects of metal electrodeposition. Int J Electrochem Sci 3:356–408Google Scholar
  4. 4.
    Ruan S, Schuh CA (2009) Electrodeposited Al–Mn alloys with microcrystalline, nanocrystalline, amorphous and nano-quasicrystalline structures. Acta Mater 57:3810–3822. doi:10.1016/j.actamat.2009.04.030 CrossRefGoogle Scholar
  5. 5.
    Stafford GR (1989) The electrodeposition of an aluminum-manganese metallic glass from molten salts. J Electrochem Soc 136:635. doi:10.1149/1.2096701 CrossRefGoogle Scholar
  6. 6.
    Nakanishi T, Ozaki M, Nam H-S et al (2001) Pulsed electrodeposition of nanocrystalline CoNiFe soft magnetic thin films. J Electrochem Soc 148:C627. doi:10.1149/1.1388886 CrossRefGoogle Scholar
  7. 7.
    Tsuda T, Hussey CL, Stafford GR (2005) Electrodeposition of Al-Mo-Mn ternary alloys from the Lewis acidic AlCl3-EtMeImCl molten salt. J Electrochem Soc 152:C620. doi:10.1149/1.1995696 CrossRefGoogle Scholar
  8. 8.
    Mishra AC, Thakur AK, Srinivas V (2009) Effect of deposition parameters on microstructure of electrodeposited nickel thin films. J Mater Sci 44:3520–3527. doi:10.1007/s10853-009-3475-y CrossRefGoogle Scholar
  9. 9.
    Nieh TG, Wadsworth J (1991) Hall-Petch relation in nanocrystalline solids. Scr Metall Mater 25:955–958CrossRefGoogle Scholar
  10. 10.
    Yahalom J, Zadok O (1987) Formation of composition-modulated alloys by electrodeposition. J Mater Sci 22:499–503. doi:10.1007/BF01160760 CrossRefGoogle Scholar
  11. 11.
    Koch CC, Scattergood RO, Darling KA, Semones JE (2008) Stabilization of nanocrystalline grain sizes by solute additions. J Mater Sci 43:7264–7272. doi:10.1007/s10853-008-2870-0 CrossRefGoogle Scholar
  12. 12.
    Weissmiiller J (1993) Alloy effects in nanostructures. Nanostruct Mater 3:261–272CrossRefGoogle Scholar
  13. 13.
    Liu F, Kirchheim R (2004) Grain boundary saturation and grain growth. Scr Mater 51:521–525. doi:10.1016/j.scriptamat.2004.05.042 CrossRefGoogle Scholar
  14. 14.
    Choi P, Dasilva M, Klement U et al (2005) Thermal stability of electrodeposited nanocrystalline Co-1.1 at.% P. Acta Mater 53:4473–4481. doi:10.1016/j.actamat.2005.06.006 CrossRefGoogle Scholar
  15. 15.
    Chen X, Mao J (2010) Thermal stability and tensile properties of electrodeposited Cu-Bi alloy. J Mater Eng Perform 20:481–486. doi:10.1007/s11665-010-9700-7 CrossRefGoogle Scholar
  16. 16.
    Detor AJ, Miller MK, Schuh CA (2006) Solute distribution in nanocrystalline Ni–W alloys examined through atom probe tomography. Philos Mag 86:4459–4475. doi:10.1080/14786430600726749 CrossRefGoogle Scholar
  17. 17.
    Hentschel T, Isheim D, Kirchheim R (2000) Nanocrystalline Ni–3.6 at.% P and its transformation sequence studied by atom-probe field-ion microscopy. Acta Mater 48:933–941CrossRefGoogle Scholar
  18. 18.
    Weston DP, Gill SPA, Fay M et al (2013) Nano-structure of Co-W alloy electrodeposited from gluconate bath. Surf Coat Technol 236:75–83. doi:10.1016/j.surfcoat.2013.09.031 CrossRefGoogle Scholar
  19. 19.
    McFadden SX, Mukherjee AK (2005) Sulfur and superplasticity in electrodeposited ultrafine-grained Ni. Mater Sci Eng A 395:265–268. doi:10.1016/j.msea.2004.12.025 CrossRefGoogle Scholar
  20. 20.
    Liu Y, Liu L, Shen B, Hu W (2011) A study of thermal stability in electrodeposited nanocrystalline Fe–Ni invar alloy. Mater Sci Eng A 528:5701–5705. doi:10.1016/j.msea.2011.04.052 CrossRefGoogle Scholar
  21. 21.
    Boylan K, Ostrander D, Erb U et al (1991) An in situ TEM study of the thermal stability of nanocrystalline Ni-P. Scr Metall Mater 25:2711–2716CrossRefGoogle Scholar
  22. 22.
    Färber B, Cadel E, Menand A et al (2000) Phosphorus segregation in nanocrystalline Ni-3.6 at.% P alloy investigated with the tomographic atom probe (TAP). Acta Mater 48:789–796CrossRefGoogle Scholar
  23. 23.
    Detor AJ, Miller MK, Schuh CA (2007) Measuring grain-boundary segregation in nanocrystalline alloys: direct validation of statistical techniques using atom probe tomography. Philos Mag Lett 87:581–587. doi:10.1080/09500830701400125 CrossRefGoogle Scholar
  24. 24.
    Detor AJ, Schuh C (2007) Grain boundary segregation, chemical ordering and stability of nanocrystalline alloys: Atomistic computer simulations in the Ni–W system. Acta Mater 55:4221–4232. doi:10.1016/j.actamat.2007.03.024 CrossRefGoogle Scholar
  25. 25.
    Detor AJ, Schuh CA (2007) Microstructural evolution during the heat treatment of nanocrystalline alloys. J Mater Res 22:3233–3248. doi:10.1557/JMR.2007.0403 CrossRefGoogle Scholar
  26. 26.
    Talin AA, Marquis EA, Goods SH et al (2006) Thermal stability of Ni–Mn electrodeposits. Acta Mater 54:1935–1947. doi:10.1016/j.actamat.2005.12.027 CrossRefGoogle Scholar
  27. 27.
    Pellicer E, Varea A, Sivaraman KM et al (2011) Grain boundary segregation and interdiffusion effects in nickel-copper alloys: an effective means to improve the thermal stability of nanocrystalline nickel. ACS Appl Mater Interfaces 3:2265–2274. doi:10.1021/am2004587 CrossRefGoogle Scholar
  28. 28.
    Armand M, Endres F, MacFarlane DR et al (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8:621–629. doi:10.1038/nmat2448 CrossRefGoogle Scholar
  29. 29.
    El Abedin SZ, Polleth M, Meiss SA et al (2007) Ionic liquids as green electrolytes for the electrodeposition of nanomaterials. Green Chem 9:549. doi:10.1039/b614520e CrossRefGoogle Scholar
  30. 30.
    Tsuda T, Hussey CL (2007) Electrochemical applications of room-temperature ionic liquids. Electrochem Soc Interface. doi:10.1002/elps.200800561 Google Scholar
  31. 31.
    Jiang T, Chollier Brym MJ, Dubé G et al (2006) Electrodeposition of aluminium from ionic liquids: Part I—electrodeposition and surface morphology of aluminium from aluminium chloride (AlCl3)–1-ethyl-3-methylimidazolium chloride ([EMIm]Cl) ionic liquids. Surf Coat Technol 201:1–9. doi:10.1016/j.surfcoat.2005.10.046 CrossRefGoogle Scholar
  32. 32.
    Jiang T, Chollier Brym MJ, Dubé G et al (2006) Electrodeposition of aluminium from ionic liquids: Part II - studies on the electrodeposition of aluminum from aluminum chloride (AICl3)—trimethylphenylammonium chloride (TMPAC) ionic liquids. Surf Coat Technol 201:10–18. doi:10.1016/j.surfcoat.2005.12.024 CrossRefGoogle Scholar
  33. 33.
    NuLi Y, Yang J, Wang J et al (2005) Electrochemical magnesium deposition and dissolution with high efficiency in ionic liquid. Electrochem Solid-State Lett 8:C166. doi:10.1149/1.2052048 CrossRefGoogle Scholar
  34. 34.
    Tsuda T, Hussey CL, Stafford GR, Bonevich JE (2003) Electrochemistry of titanium and the electrodeposition of Al-Ti alloys in the Lewis acidic aluminum chloride–1-ethyl-3-methylimidazolium chloride melt. J Electrochem Soc 150:C234. doi:10.1149/1.1554915 CrossRefGoogle Scholar
  35. 35.
    Kong BO, Suk JI, Nam SW (1996) Identification of Mn-dispersoid in Al-Zn-Mg-Mn alloy. J Mater Sci Lett 15:763–766. doi:10.1007/BF00274597 CrossRefGoogle Scholar
  36. 36.
    Abbott AP, Frisch G, Ryder KS (2013) Electroplating using ionic liquids. Annu Rev Mater Res 43:335–358. doi:10.1146/annurev-matsci-071312-121640 CrossRefGoogle Scholar
  37. 37.
    Clark D, Wood D, Erb U (1997) Industrial applications of electrodeposited nanocrystals. Nanostruct Mater 9:755–758CrossRefGoogle Scholar
  38. 38.
    Wei Y (2004) Grain-boundary sliding and separation in polycrystalline metals: application to nanocrystalline fcc metals. J Mech Phys Solids 52:2587–2616. doi:10.1016/j.jmps.2004.04.006 CrossRefGoogle Scholar
  39. 39.
    Ruan S, Schuh CA (2012) Towards electroformed nanostructured aluminum alloys with high strength and ductility. J Mater Res 27:1638–1651. doi:10.1557/jmr.2012.105 CrossRefGoogle Scholar
  40. 40.
    Zein El Abedin S, Endres F (2013) Challenges in the electrochemical coating of high-strength steel screws by aluminum in an acidic ionic liquid composed of 1-Ethyl-3-methylimidazolium chloride and AlCl3. J Solid State Electrochem 17:1127–1132. doi:10.1007/s10008-012-1973-3 CrossRefGoogle Scholar
  41. 41.
    Du Y, Wang J, Zhao J et al (2007) Reassessment of the Al-Mn system and a thermodynamic description of the Al-Mg-Mn system. J Mater Res 98:855–871. doi:10.3193/146.101547 Google Scholar
  42. 42.
    Shechtman D, Blech I (1984) Metallic phase with long-range orientational order and no translational symmetry. Phys Rev Lett 53:1951–1954CrossRefGoogle Scholar
  43. 43.
    Cai W, Schuh CA (2012) Tuning nanoscale grain size distribution in multilayered Al–Mn alloys. Scr Mater 66:194–197. doi:10.1016/j.scriptamat.2011.10.040 CrossRefGoogle Scholar
  44. 44.
    Ruan S, Torres KL, Thompson GB, Schuh CA (2011) Gallium-enhanced phase contrast in atom probe tomography of nanocrystalline and amorphous Al-Mn alloys. Ultramicroscopy 111:1062–1072. doi:10.1016/j.ultramic.2011.01.026 CrossRefGoogle Scholar
  45. 45.
    Felfer P (2012) Atom probe sample preparation using FIB: ref-guide/case studiesGoogle Scholar
  46. 46.
    Felfer PJ, Alam T, Ringer SP, Cairney JM (2012) A reproducible method for damage-free site-specific preparation of atom probe tips from interfaces. Microsc Res Tech 75:484–491. doi:10.1002/jemt.21081 CrossRefGoogle Scholar
  47. 47.
    Rachbauer R, Massl S, Stergar E et al (2010) Atom probe specimen preparation and 3D interfacial study of Ti–Al–N thin films. Surf Coat Technol 204:1811–1816. doi:10.1016/j.surfcoat.2009.11.020 CrossRefGoogle Scholar
  48. 48.
    Miller MK, Russell KF (2007) Atom probe specimen preparation with a dual beam SEM/FIB miller. Ultramicroscopy 107:761–766. doi:10.1016/j.ultramic.2007.02.023 CrossRefGoogle Scholar
  49. 49.
    Miller MK, Russell KF, Thompson K et al (2007) Review of atom probe FIB-based specimen preparation methods. Microsc Microanal 13:428–436. doi:10.1017/S1431927607070845 CrossRefGoogle Scholar
  50. 50.
    Cowan G (1998) Statistical data analysis. Oxford University Press, OxfordGoogle Scholar
  51. 51.
    Alber U, Müllejans H, Rühle M (1997) Improved quantification of grain boundary segregation by EDS in a dedicated STEM. Ultramicroscopy 69:105–116CrossRefGoogle Scholar
  52. 52.
    Gault B, Moddy MP, Cairney JM, Ringer SP (2012) Atom Probe Microscopy, Springer Science & Business Media, Berlin, doi:10.1007/978/-1-4614-3436-8
  53. 53.
    Mottura A, Miller MK, Reed RC (2008) Atom probe tomography analysis of possible rhenium clustering in nickel-based superalloys. Superalloys 2008:891–900. doi:10.7449/2008/Superalloys_2008_891_900 CrossRefGoogle Scholar
  54. 54.
    Herbig M, Raabe D, Li YJ et al (2014) Atomic-scale quantification of grain boundary segregation in nanocrystalline material. Phys Rev Lett 112:126103. doi:10.1103/PhysRevLett.112.126103 CrossRefGoogle Scholar
  55. 55.
    Murdoch HA, Schuh CA (2013) Stability of binary nanocrystalline alloys against grain growth and phase separation. Acta Mater 61:2121–2132. doi:10.1016/j.actamat.2012.12.033 CrossRefGoogle Scholar
  56. 56.
    Trelewicz J, Schuh C (2009) Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys. Phys Rev B 79:1–13. doi:10.1103/PhysRevB.79.094112 CrossRefGoogle Scholar
  57. 57.
    Eshelby JD (1954) Distortion of a crystal by point imperfections. J Appl Phys 25:255. doi:10.1063/1.1721615 CrossRefGoogle Scholar
  58. 58.
    Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society of London, LondonGoogle Scholar
  59. 59.
    Bakker H (1998) Enthalpies in alloys- Miedema’s semi-empirical model. Trans Tech Publications Ltd, DürntenGoogle Scholar
  60. 60.
    De Boer FR, Boom R, Mattens WCM et al (1988) Cohesion in metals: transition metal alloys. North Holland, AmsterdamGoogle Scholar
  61. 61.
    James AM, Loard MP (1992) Macmillan’s chemical and physical data. Macmillan, LondonGoogle Scholar
  62. 62.
    Chookajorn T, Murdoch HA, Schuh CA (2012) Design of stable nanocrystalline alloys. Science 337:951–954. doi:10.1126/science.1224737 CrossRefGoogle Scholar
  63. 63.
    Grushko B, Stafford GR (1989) Structural study of electrodeposited aluminum-manganese alloys. Metall Trans A 20:1351–1359CrossRefGoogle Scholar
  64. 64.
    Stafford GR, Grushko B, McMichael RD (1993) The electrodeposition of Al-Mn ferromagnetic phase from molten salt electrolyte. J Alloys Compd 200:107–113. doi:10.1016/0925-8388(93)90479-7 CrossRefGoogle Scholar
  65. 65.
    Grushko B, Stafford GR (1989) A structural study of a metastable phase in Al-Mn alloys electrodeposited from molten salts. Scr Metall Mater Metall Mater 23:557–562Google Scholar
  66. 66.
    Grushko B, Stafford GR (1990) Phase formation in electrodeposited and thermally annealed Al-Mn alloys. Metall Trans A 21:2869–2879CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ting-Yun Huang
    • 1
  • Christopher J. Marvel
    • 2
  • Patrick R. Cantwell
    • 3
  • Martin P. Harmer
    • 2
  • Christopher A. Schuh
    • 1
  1. 1.Departments of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Materials Science and EngineeringLehigh UniversityBethlehemUSA
  3. 3.Department of Mechanical EngineeringRose-Hulman Institute of TechnologyTerre HauteUSA

Personalised recommendations