Abstract
Softwood hemicelluloses could potentially be combined with cellulose and used in packaging materials. In the present study, galactoglucomannan (GGM) is adsorbed to wood cellulose nanofibers (CNF) and filtered and dried or hot-pressed to form nanocomposite films. The CNF/GGM fibril diameters are characterized by AFM, and the colloidal behavior by dynamic light scattering. Mechanical properties are measured in uniaxial tension for wet gels, dried films, and hot-pressed films. The role of GGM is particularly important for the wet gels. The wet gels of CNF/GGM exhibit remarkable improvement in mechanical properties. FE-SEM fractography and moisture sorption studies are carried out to interpret the results for hygromechanical properties. The present study shows that GGM may find use as a molecular scale cellulose binding agent, causing little sacrifice in mechanical properties and improving wet strength.
This is a preview of subscription content, access via your institution.










References
Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Technol 18:84–95
Kisonen V, Prakobna K, Xu C et al (2015) Composite films of nanofibrillated cellulose and O-acetyl galactoglucomannan (GGM) coated with succinic esters of GGM showing potential as barrier material in food packaging. J Mater Sci 50:3189–3199. doi:10.1007/s10853-015-8882-7
Carpita NC, McCann MC (2000) Chapter 2 “The cell wall”. In: Buchanan BB, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society Plant Physiologists, Rockville, pp 52–108
Bacic A, Harris PJ, Stone BA (1988) Structure and function of plant cell walls. In: Preiss J (ed) The Biochemistry of Plants. Acedamic Press Inc, New York, pp 297–371
Dinwoodie JM (1981) Timber: its nature and behaviour. Van Nostrand Reinhold, New York
Xu P, Donaldson LA, Gergely ZR, Staehelin LA (2007) Dual-axis electron tomography: a new approach for investigating the spatial organization of wood cellulose microfibrils. Wood Sci Technol 41:101–116
Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57:651–659
Sturcova A, Davies GR, Eicchorn S (2006) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6:1055–1061
Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10:2571–2576
Saito T, Kuramae R, Wohlert J, Berglund LA, Isogai A (2013) An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromolecules 14:248–253
Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441
Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691
Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci 37:815–827
Hansen NML, Blomfeldt TOJ, Hedenqvist MS, Plackett DV (2012) Properties of plasticized composite films prepared from nanofibrillated cellulose and birch wood xylan. Cellulose 19:2015–2031
Mikkonen KS, Stevanic JS, Joly C et al (2011) Composite films from spruce galactoglucomannans with microfibrillated spruce wood cellulose. Cellulose 18:713–726
Stevanic JS, Mikkonen KS, Xu C, Tenkanen M, Berglund L, Salmen L (2015) Wood cell wall mimicking for composite films of spruce nanofibrillated cellulose with spruce galactoglucomannan and arabinoglucuronoxylan. J Mater Sci 49:5043–5055. doi:10.1007/s10853-014-8210-7
Prakobna K, Terenzi C, Zhou Q, Furo I, Berglund LA (2015) Core-shell cellulose nanofibers for biocomposites—nanostructural effects in hydrated state. Carbohydr Polym 125:92–102
Sjöström E (1993) Wood chemistry: fundamentals and applications. Academic Press Inc., San Diego, pp 51–70
Willför S, Sjöholm R, Laine C, Roslund M, Hemming J, Holmbom B (2003) Characterisation of water-soluble galactoglucomannans from Norway spruce wood and thermomechanical pulp. Cabohydr Polym 52:175–187
Willför S, Sundberg A, Hemming J, Holmbom B (2005) Polysaccharides in some industrially important softwood species. Wood Sci Technol 39:245–257
Hartman J, Albertsson AC, Lindblad MS, Sjöberg J (2006) Oxygen barrier materials from renewable sources: material properties of softwood hemicellulose-based films. J Appl Polym Sci 100:2985–2991
Mikkonen KS, Heikkilä MI, Helen H, Hyvönen L, Tenkanen M (2010) Spruce galactoglucomannan films show promising barrier properties. Carbohydr Polym 79:1107–1112
Mikkonen KS, Yadav MP, Cooke P, Willför S, Hicks KB, Tenkanen M (2008) Films from spruce galactogluccomannan blended with poly(vinyl alcohol), corn arabonoxylan, and konjac glucomannan. Bioresource 3:178–191
Teeri TT, Brumer H, Daniel G, Gatenholm P (2007) Biomimetic engineering of cellulose-based materials. Trends Biotechnol 25:299–306
Svagan AJ, Azizi Samir MAS, Berglund LA (2007) Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromolecules 8:2556–2563
Olszewska A, Valle-Delgado JJ, Nikinmaa M, Laine J, Österberg M (2013) Direct measurements of non-ionic attraction and nanoscaled lubrication in biomimetic composites from nanofibrillated cellulose and modified carboxymethylated cellulose. Nanoscale 5:11837–11844
Prakobna K, Galland S, Berglund LA (2015) High-performance and moisture-stable cellulose-starch nanocomposites based on bioinspired core-shell nanofibers. Biomacromolecules 16:904–912
Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structure of high toughness. Biomacromolecules 9:1579–1585
Sehaqui H, Zhou Q, Berglund LA (2011) Nanostructured biocomposites of high toughness—a wood cellulose nanofiber network in ductile hydroxyethylcellulose matrix. Soft Matter 7:7342–7350
Lucenius J, Parikka K, Österberg M (2014) Nanocomposite films based on cellulose nanofibrils and water-soluble polysaccharides. React Funct Polym 85:167–174
Whitney SEC, Gothard MGE, Mitchell JT, Gidley MJ (1999) Roles of cellulose and xyloglucan in determining the mechnaical properties of primary plant cell walls. Plant Physiol 121:657–663
Chanliaud E, Burrows KM, Jeronimidis G, Gidley MJ (2002) Mechanical properties of primary plant cell wall analogues. Planta 215:989–996
Cybulska J, Vanstreels E, Ho QT et al (2010) Mechanical characteristics of artificial cell walls. J Food Eng 96:287–294
Willför S, Rehn P, Sundberg A, Sundberg K, Holmbom B (2003) Recovery of water-soluble acetylgalactoglucomannans from mechanical pulp of spruce. Tappi J 2:27–32
Xu C, Eckerman C, Smeds A, Reunanen M, Eklund PC, Sjöholm R, Willför S (2009) Rheological properties of water-soluble spruce O-acetyl galactoglucomannans. Carbohydr Polym 75:p498–p504
Michielsen S (1999) Specific refractive index increments of polymers in dilute solution. In: Brandrup J, Immergut EH, Grulke EA (eds) Polymer handbook. Wiley, New York pp, pp 547–627
Sundberg A, Kenneth S, Lillandt C, Holmbom B (1996) Determination of hemicelluloses and pectins in wood and pulp fibres by acid methanolysis and gas chromatography. Nord Pulp Paper Res J 11:216–219
Sehaqui H, Liu A, Zhou Q, Berglund LA (2010) Fast preparation procedure for large, flat cellulose and cellulose-inorganic nanopaper structures. Biomacromolecules 11:2195–2198
Sehaqui H, Zhou Q, Ikkala O, Berglund LA (2011) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromolecules 12:3638–3644
Whitney SEC, Brigham JE, Darke AH, Reid JSG, Gidley MJ (1998) Structural aspects of the interaction of mannan-based polysaccharides with bacterial cellulose. Cabohydr Res 307:299–309
Eronen P, Österberg M, Heikkinen S, Tenkanen S, Laine J (2011) Interactions of structurally different hemicelluloses with nanofibrillar cellulose. Carbohydr Polym 86:1281–1290
Vincken JP, Keizer AD, Beldman G, Voragen AGJ (1995) Fractionation of xyloglucan fragments and their interaction with cellulose. Plant Physiol 108:1579–1585
Xu C, Eckerman C, Smeds A et al (2011) Carboxymethylated spruce galactoglucomannans: preparation, characterisation, dispersion stability, water-in-oil emulsion stability, and sorption on cellulose surface. Nord Pulp Paper Res J 26:167–178
Hubbe MA, Rojas OJ (2008) Colloidal stability and aggregation of lignocellulosic material in aqueous: a review. BioResources 3:1419–1491
Fall AB, Lindström SB, Sundman O, Ödberg L, Wågberg L (2011) Colloidal stability of aqueous nanofibrillated cellulose dispersions. Langmuir 27:11332–11338
Fernandes AN, Thomas L, Altaner CM et al (2011) Nanostructure of cellulose microfibrils in spruce wood. PNAS Plus 108:E1195–E1203
Whitney SEC, Brigham JE, Darke AH, Reid JSG, Gidley MJ (1995) In vitro assembly of cellulose/XG networks: ultrastructure and molecular. Plant J 8:491–504
Nilsson H, Galland S, Larsson PT, Gamstedt EK, Nishino T, Berglund LA, Iversen T (2010) A non-solvent approach for high-stiffness all-cellulose biocomposites based on pure wood cellulose. Compos Sci Technol 70:1704–1712
Nilsson H, Galland S, Larsson PT, Gamstedt EK, Iversen T (2012) Compression molded wood pulp biocomposites: a study of hemicellulose influence on cellulose supramolecular structure and material properties. Cellulose 19:751–760
Salmen L, Olsson AM (1998) Interaction between hemicelluloses, lignin and cellulose: structure and property relationships. J Pulp Pap Sci 24:99–103
Kelly A (1970) Interface effects and the work of fracture of a fibrous composite. Proc R Soc Lond A 319:95–116
Brunauer S (1943) The adsorption of gases and vapors-I physical adsorption. Princeton University Press, Princeton
Obataya E, Norimoto M, Gril J (1998) The effects of adsorbed water on dynamic mechanical properties of wood. Polymer 39:3059–3064
Luo HL, Lian JJ, Wan YZ, Huang Y, Wang YL, Jiang HJ (2006) Moisture absorption in VARTMed three-dimensional braided carbon-epoxy composites with different interface conditons. Mater Sci Eng A 425:70–77
Acknowledgements
Financial support from the Wallenberg Wood Science Center (WWSC) and a scholarship fund from the Siam Cement Group (SCG) are gratefully acknowledged. Extraction and analysis of the GGM component are part of the activities at the Johan Gadolin Process Chemistry Center, a Center of Excellence by Åbo Akademi University.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Prakobna, K., Kisonen, V., Xu, C. et al. Strong reinforcing effects from galactoglucomannan hemicellulose on mechanical behavior of wet cellulose nanofiber gels. J Mater Sci 50, 7413–7423 (2015). https://doi.org/10.1007/s10853-015-9299-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10853-015-9299-z