Thermodynamic analysis of water vapour sorption behaviour of juvenile and mature wood of Abies alba Mill.

Abstract

The hygroscopicity and thermodynamic properties of juvenile and mature wood of Abies alba Mill. were studied through the 15, 35 and 50 °C sorption isotherms. The Guggenheim, Anderson and de Boer-Dent model was used to fit the isotherms. The thermodynamic parameters were obtained from the sorption isotherms by applying the integration method of the Clausius–Clapeyron equation. The chemical composition of both types of wood (extractives, lignin and carbohydrate polymer-cellulose and hemicellulose-content) was determined, and infrared spectroscopy and X-ray diffractograms were used to identify any chemical modifications and changes in the crystal structure of the cell wall. The mature wood has more cellulose and hemicellulose content and less extractives content than the juvenile wood. The shorter crystallite length in the mature wood creates a higher amount of amorphous zones and, as a consequence, a higher number of access areas to the –OH groups. The combination of these phenomena explains the different hygroscopic behaviour between the juvenile and the mature wood, as the latter has higher moisture content in the three isotherms. As regards the thermodynamic properties, the amount of energy involved in the sorption process is greater in the mature wood than in the juvenile wood.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Popescu CM, Hill CAS, Curling S et al (2014) The water vapour sorption behaviour of acetylated birch wood: how acetylation affects the sorption isotherm and accessible hydroxyl content. J Mater Sci 49:2362–2371. doi:10.1007/s10853-013-7937-x

    Article  Google Scholar 

  2. 2.

    Siau JF (1995) Wood: Influence of moisture on physical properties. Department of Wood Science and Forest Products, Virginia Polytechnic Institute and State University, Blackburg

    Google Scholar 

  3. 3.

    Almeida G, Hernandez RE (2006) Changes in physical properties of tropical and temperate hardwoods below and above the fiber saturation point. Wood Sci Technol 40:599–613. doi:10.1007/s00226-006-0083-8

    Article  Google Scholar 

  4. 4.

    Hill C (2006) Wood modification. Chemical, thermal and other processes. Wiley, Chichester

    Book  Google Scholar 

  5. 5.

    Kretschmann DE (2010) Mechanical properties of wood. In: Wood handbook, wood as an engineering material. General Technical Report FPL-GTR-190. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, pp 1–46

  6. 6.

    Rautkari L, Honkanen J, Hill CAS et al (2014) Mechanical and physical properties of thermally modified scots pine wood in high pressure reactor under saturated steam at 120, 150 and 180 °C. Eur J Wood Prod 72:33–41. doi:10.1007/s00107-013-0749-5

    Article  Google Scholar 

  7. 7.

    Pearson H, Gabbitas B, Ormarsson S (2013) Equilibrium moisture content of radiata pine at elevated temperature and pressure reveals measurement challenges. J Mater Sci 48:332–341. doi:10.1007/s10853-012-6750-2

    Article  Google Scholar 

  8. 8.

    Zobel B, Matthias M, Roberds JH et al (1968) Moisture content of southern pine trees. Technical Report No. 37. School of Forest Resources, North Carolina State University, Raleigh

  9. 9.

    Lenth CA, Kamke FA (2001) Equilibrium moisture content of wood in high-temperature pressurized environments. Wood Fiber Sci 33:104–118

    Google Scholar 

  10. 10.

    Militz H, Busetto D, Hapla F (2003) Investigation on natural durability and sorption properties of Italian chestnut (Castanea sativa Mill.) from coppice stands. Holz Roh Werkst 61:133–141. doi:10.1007/S00107-002-0357-2

    Article  Google Scholar 

  11. 11.

    Neimsuwan T, Wang S, Taylor AM et al (2008) Statics and kinetics of water vapor sorption of small loblolly pine samples. Wood Sci Technol 42:493–506. doi:10.1007/s00226-007-0165-2

    Article  Google Scholar 

  12. 12.

    Majka J, Olek W (2008) Sorption properties of mature and juvenile lime wood (Tilia sp.). Folia For Polon B 39:65–75

    Google Scholar 

  13. 13.

    Hill C, Moore J, Jalaludin Z et al (2011) Influence of earlywood/latewood and ring position upon water vapour sorption properties of sitka spruce. Int Wood Prod J 2:12–19. doi:10.1179/2042645311Y.0000000001

    Article  Google Scholar 

  14. 14.

    Esteban LG, Simon C, Fernandez FG et al (2015) Juvenile and mature wood of Abies pinsapo Boissier: sorption and thermodynamic properties. Wood Sci Technol 49:725–738. doi:10.1007/s00226-015-0730-z

    Article  Google Scholar 

  15. 15.

    Hill CAS, Ramsay J, Gardiner B (2015) Variability in water vapour sorption isotherm in Japanese larch (Larix kaempferi Lamb.)—earlywood and latewood influences. Int Wood Prod J 6:53–59. doi:10.1179/2042645314Y.0000000090

    Article  Google Scholar 

  16. 16.

    Tsoumis G (1991) Science and technology of wood. Kluwer Academic Publishers, New York

    Google Scholar 

  17. 17.

    Shupe TF, Hse CY, Choong ET et al (1997) Differences in some chemical properties of innerwood and outerwood from five silviculturally different loblolly pine stands. Wood Fiber Sci 29:91–97

    Google Scholar 

  18. 18.

    Zobel BJ, Sprague JR (1998) Juvenile wood in forest trees., Springer Series in Wood ScienceSpringer, Berlin

    Book  Google Scholar 

  19. 19.

    Bao FC, Jiang ZH, Jiang XM et al (2001) Differences in wood properties between juvenile wood and mature wood in 10 species grown in China. Wood Sci Technol 35:363–375

    Article  Google Scholar 

  20. 20.

    Rowell RM (2005) Wood chemistry and wood composites. Taylor & Francis, Boca Raton

    Google Scholar 

  21. 21.

    Song KL, Yin YF, Salmen L et al (2014) Changes in the properties of wood cell walls during the transformation from sapwood to heartwood. J Mater Sci 49:1734–1742. doi:10.1007/s10853-013-7860-1

    Article  Google Scholar 

  22. 22.

    Aviara NA, Ajibola OO, Oni SA (2004) Sorption equilibrium and thermodynamic characteristics of soya bean. Biosyst Eng 87:179–190. doi:10.1016/j.biosystemseng.2003.11.006

    Article  Google Scholar 

  23. 23.

    Fengel D, Wegener G (1983) Wood chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin

    Book  Google Scholar 

  24. 24.

    Kolin B, Danon G, Janezic TS (1995) Empirical equation for limit of hygroscopicity. Dry Technol 13:2133–2139. doi:10.1080/07373939508917069

    Article  Google Scholar 

  25. 25.

    Bodirlau R, Teaca CA (2008) Softwood chemical modification by reaction with organic anhydrides. Rev Roum Chim 53:1059–1064

    Google Scholar 

  26. 26.

    Nagy B, Maicaneanu A, Indolean C et al (2013) Cadmium (II) Ions removal from aqueous solutions using Romanian untreated fir tree sawdust—a green biosorbent. Acta Chim Slov 60:263–273

    Google Scholar 

  27. 27.

    Bratasz L, Kozlowska A, Kozlowski R (2012) Analysis of water adsorption by wood using the Guggenheim–Anderson–de Boer equation. Eur J Wood Prod 70:445–451. doi:10.1007/s00107-011-0571-x

    Article  Google Scholar 

  28. 28.

    Themelin A, Rebollo J, Thibaut A (1997) Method for defining the behaviour of lignocellulosic produces at sorption: application to tropical wood species. In: Hoffmeyer P (ed.) International conference on wood-water relations. Copenhagen, 16–17 June 1997, pp 17–32

  29. 29.

    Jowitt R, Wagstaffe PJ (1989) The certification of water content of microcrystalline cellulose (MCC) at 10 water activities. Commission of the European Communities. Community Bureau of Reference, EUR 12429, EN, Brussels

    Google Scholar 

  30. 30.

    Arevalo-Pinedo A, Giraldo-Zuñiga AD, Dos Santos FL et al (2004) Sorption isotherms experimental data and mathematical models for murici pulp (Byrsonima sericea). In: Drying (ed.) Proceedings of the 14th international drying symposium (IDS 2004), vol A. Sao Paulo, 22–25 Aug 2004, pp 634–639

  31. 31.

    Jannot Y, Kanmogne A, Talla A et al (2006) Experimental determination and modelling of water desorption isotherms of tropical woods: Afzelia, Ebony, Iroko, Moabi and Obeche. Holz Roh Werkst 64:121–124. doi:10.1007/s00107-005-0051-2

    Article  Google Scholar 

  32. 32.

    Viollaz PE, Rovedo CO (1999) Equilibrium sorption isotherms and thermodynamic properties of starch and gluten. J Food Eng 40:287–292. doi:10.1016/S0260-8774(99)00066-7

    Article  Google Scholar 

  33. 33.

    Esteban LG, de Palacios P, Fernandez FG et al (2008) Sorption and thermodynamic properties of juvenile Pinus sylvestris L. wood after 103 years of submersion. Holzforschung 62:745–751. doi:10.1515/HF.2008.106

    Article  Google Scholar 

  34. 34.

    Esteban LG, de Palacios P, Garcia Fernandez F et al (2009) Sorption and thermodynamic properties of buried juvenile Pinus sylvestris L. wood aged 1170 ± 40 BP. Wood Sci Technol 43:140–151. doi:10.1007/s00226-009-0261-6

    Article  Google Scholar 

  35. 35.

    Sluiter A, Ruiz R, Scarlata C et al (2005) Determination of extractives in biomass. National Renewable Energy Laboratory (NREL) Laboratory Analytical Procedure (LAP). http://www.nrel.gov/biomass/pdfs/42619.pdf. Accessed 13 Mar 2015

  36. 36.

    Sluiter A, Hames B, Ruiz R et al (2011) Determination of structural carbohydrates and lignin in Biomass. National Renewable Energy Laboratory (NREL) Laboratory Analytical Procedure (LAP). http://www.nrel.gov/biomass/pdfs/42618.pdf. Accessed 13 Mar 2015

  37. 37.

    Easty DB, Malcolm EW (1982) Estimation of pulping yield in continuous digesters from carbohydrate and lignin determinations. Tappi J 65:78–80

    Google Scholar 

  38. 38.

    Vaaler D, Syverud K, Seem B et al (2005) Estimating the pulping yield by carbohydrate analysis. Tappi J 4:23–27

    Google Scholar 

  39. 39.

    Jones PD, Schimleck LR, Peter GF et al (2006) Nondestructive estimation of wood chemical composition of sections of radial wood strips by diffuse reflectance near infrared spectroscopy. Wood Sci Technol 40:709–720. doi:10.1007/s00226-006-0085-6

    Article  Google Scholar 

  40. 40.

    Passialis CN (1997) Physico-chemical characteristics of waterlogged archaeological wood. Holzforschung 51:111–113. doi:10.1515/hfsg.1997.51.2.111

    Article  Google Scholar 

  41. 41.

    Huo D, Fang G, Yang Q et al (2013) Enhancement of eucalypt chips’ enzymolysis efficiency by a combination method of alkali impregnation and refining pretreatment. Bioresour Technol 150:73–78. doi:10.1016/j.biortech.2013.09.130

    Article  Google Scholar 

  42. 42.

    Jahan MS, Mun SP (2005) Effect of tree age on the cellulose structure of Nalita wood (Trema orientalis). Wood Sci Technol 39:367–373. doi:10.1007/s00226-005-0291-7

    Article  Google Scholar 

  43. 43.

    Lionetto F, Del Sole R, Cannoletta D et al (2012) Monitoring wood degradation during weathering by cellulose crystallinity. Materials 5:1910–1922. doi:10.3390/ma5101910

    Article  Google Scholar 

  44. 44.

    Thygesen A, Oddershede J, Lilholt H et al (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12:563–576. doi:10.1007/s10570-005-9001-8

    Article  Google Scholar 

  45. 45.

    Bonarski JT, Olek W (2011) Application of the crystalline volume fraction for characterizing the ultrastructural organization of wood. Cellulose 18:223–235. doi:10.1007/s10570-010-9486-7

    Article  Google Scholar 

  46. 46.

    Avramidis S (1997) The basics of sorption. In: Hoffmeyer P (Ed.) International Conference on Wood-Water Relations. Copenhagen, 16-17 June 1997, pp 1–16

  47. 47.

    Peralta PN, Bangi AP, Lee AWC (1997) Thermodynamics of moisture sorption by the giant-timber bamboo. Holzforschung 51:177–182. doi:10.1515/hfsg.1997.51.2.177

    Article  Google Scholar 

  48. 48.

    Nelson RM (1983) A model for sorption of water vapor by cellulosic materials. Wood Fiber Sci 15:8–22

    Google Scholar 

  49. 49.

    Zaihan J, Hill CAS, Hashim WS et al (2011) Analysis of the water vapour sorption isotherms of oil palm trunk and rubberwood. J Trop For Sci 23:97–105

    Google Scholar 

  50. 50.

    Christensen GN, Kelsey KE (1959) The rate of sorption of water vapor by wood. Holz Roh Werkst 17:178–188

    Article  Google Scholar 

  51. 51.

    Wangaard FF, Granados LA (1967) The effect of extractives on water-vapor sorption by wood. Wood Sci Technol 1:253–277

    Article  Google Scholar 

  52. 52.

    Choong ET, Achmadi SS (1991) Effect of extractives on moisture sorption and shrinkage in tropical woods. Wood Fiber Sci 23:185–196

    Google Scholar 

  53. 53.

    Hernandez RE (2007) Moisture sorption properties of hardwoods as affected by their extraneous substances, wood density, and interlocked grain. Wood Fiber Sci 39:132–145

    Google Scholar 

  54. 54.

    Engelund ET, Thygesen LG, Svensson S et al (2013) A critical discussion of the physics of wood-water interactions. Wood Sci Technol 47:141–161. doi:10.1007/s00226-012-0514-7

    Article  Google Scholar 

  55. 55.

    Fernandez FG, Esteban LG, de Palacios P et al (2014) Sorption and thermodynamic properties of Terminalia superba Engl. & Diels and Triplochiton scleroxylon K. Schum. through the 15, 35 and 50 °C sorption isotherms. Eur J Wood Prod 72:99–106. doi:10.1007/s00107-013-0752-x

    Article  Google Scholar 

  56. 56.

    Singh PC, Singh RK (1996) Application of GAB model for water sorption isotherms of food products. J Food Process Preserv 20:203–220. doi:10.1111/j.1745-4549.1996.tb00743.x

    Article  Google Scholar 

  57. 57.

    Kouhila M, Kechaou N, Otmani M et al (2002) Experimental study of sorption isotherms and drying kinetics of Moroccan Eucalyptus globulus. Dry Technol 20:2027–2039. doi:10.1081/DRT-120015582

    Article  Google Scholar 

  58. 58.

    Quirijns EJ, van Boxtel AJB, van Loon WKP et al (2005) An improved experimental and regression methodology for sorption isotherms. J Sci Food Agric 85:175–185. doi:10.1002/jsfa.1773

    Article  Google Scholar 

  59. 59.

    Chirife J, Timmermann EO, Iglesias HA et al (1992) Some features of the parameter-K of the Gab equation as applied to sorption isotherms of selected food materials. J Food Eng 15:75–82. doi:10.1016/0260-8774(92)90041-4

    Article  Google Scholar 

  60. 60.

    Maskan M, Gogus F (1997) The fitting of various models to water sorption isotherms of pistachio nut paste. J Food Eng 33:227–237. doi:10.1016/S0260-8774(97)00061-7

    Article  Google Scholar 

  61. 61.

    Esteban LG, Fernandez FG, Casasus AG et al (2006) Comparison of the hygroscopic behaviour of 205-year-old and recently cut juvenile wood from Pinus sylvestris L. Ann For Sci 63:309–317. doi:10.1051/forest:2006010

    Article  Google Scholar 

  62. 62.

    Esteban LG, de Palacios P, Fernandez FG et al (2008) Sorption and thermodynamic properties of old and new Pinus sylvestris wood. Wood Fiber Sci 40:111–121

    Google Scholar 

  63. 63.

    Yokoyama T, Kadla JF, Chang HM (2002) Microanalytical method for the characterization of fiber components and morphology of woody plants. J Agric Food Chem 50:1040–1044. doi:10.1021/jf011173q

    Article  Google Scholar 

  64. 64.

    Illic J, Northway R, Pongracic S (2003) Juvenile wood characteristics, effects and identification: literature review. Forest & Wood Products Research & Development Corporation, Victoria

    Google Scholar 

  65. 65.

    Bertaud F, Holmbom B (2004) Chemical composition of earlywood and latewood in Norway spruce heartwood, sapwood and transition zone wood. Wood Sci Technol 38:245–256. doi:10.1007/s00226-004-0241-9

    Article  Google Scholar 

  66. 66.

    Peura M, Saren MP, Laukkanen J et al (2008) The elemental composition, the microfibril angle distribution and the shape of the cell cross-section in Norway spruce xylem. Trees-Struct Funct 22:499–510. doi:10.1007/s00468-008-0210-2

    Article  Google Scholar 

  67. 67.

    Panshin AJ, de Zeeuw C (1980) Textbook of wood technology, 4th edn. McGraw-Hill Book Company, New York

    Google Scholar 

  68. 68.

    Kollmann F (1951) Technologie des Holzes und der Holzwekstoffe, vol I. Springer, Berlin

    Google Scholar 

  69. 69.

    Larson PR (1966) Changes in chemical composition of wood cell walls associated with age in Pinus resinosa. For Prod J 16:37–45

    Google Scholar 

  70. 70.

    Nikitin NL (1966) The chemistry of cellulose and wood. Israel Program for Scientific Translations, Jerusalem

    Google Scholar 

  71. 71.

    Latorraca JVF, Dunisch O, Koch G (2011) Chemical composition and natural durability of juvenile and mature heartwood of Robinia pseudoacacia L. An Acad Bras Cienc 83:1059–1068

    Article  Google Scholar 

  72. 72.

    Esteban LG, de Palacios P, Fernandez FG et al (2010) Effects of burial of Quercus spp. wood aged 5910 ± 250 BP on sorption and thermodynamic properties. Int Biodeter Biodegr 64:371–377. doi:10.1016/j.ibiod.2010.01.010

    Article  Google Scholar 

  73. 73.

    Andersson S, Serimaa R, Paakkari T et al (2003) Crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies). J Wood Sci 49:531–537. doi:10.1007/s10086-003-0518-x

    Google Scholar 

  74. 74.

    Andersson S, Wikberg H, Pesonen E et al (2004) Studies of crystallinity of Scots pine and Norway spruce cellulose. Trees-Struct Funct 18:346–353. doi:10.1007/s00468-003-0312-9

    Article  Google Scholar 

  75. 75.

    Li XJ, Cao ZY, Wei ZY et al (2011) Equilibrium moisture content and sorption isosteric heats of five wheat varieties in China. J Stored Prod Res 47:39–47. doi:10.1016/j.jspr.2010.10.001

    Article  Google Scholar 

  76. 76.

    Telis VRN, Gabas AL, Menegalli FC et al (2000) Water sorption thermodynamic properties applied to persimmon skin and pulp. Thermochim Acta 343:49–56. doi:10.1016/S0040-6031(99)00379-2

    Article  Google Scholar 

  77. 77.

    McMinn WAM, Magee TRA (2003) Thermodynamic properties of moisture sorption of potato. J Food Eng 60:157–165. doi:10.1016/S0260-8774(03)00036-0

    Article  Google Scholar 

  78. 78.

    Tsami E (1991) Net isosteric heat of sorption in dried fruits. J Food Eng 14:327–335

    Article  Google Scholar 

  79. 79.

    Vrentas JS, Vrentas CM (1996) Hysteresis effects for sorption in glassy polymers. Macromolecules 29:4391–4396. doi:10.1021/ma950969l

    Article  Google Scholar 

  80. 80.

    Lu YF, Pignatello JJ (2002) Demonstration of the “Conditioning effect” in soil organic matter in support of a pore deformation mechanism for sorption hysteresis. Environ Sci Technol 36:4553–4561. doi:10.1021/es020554x

    Article  Google Scholar 

  81. 81.

    Lu YF, Pignatello JJ (2004) History-dependent sorption in humic acids and a lignite in the context of a polymer model for natural organic matter. Environ Sci Technol 38:5853–5862. doi:10.1021/es049774w

    Article  Google Scholar 

  82. 82.

    Hill CAS, Norton AJ, Newman G (2010) The water vapour sorption properties of Sitka spruce determined using a dynamic vapour sorption apparatus. Wood Sci Technol 44:497–514. doi:10.1007/s00226-010-0305-y

    Article  Google Scholar 

  83. 83.

    Browning BL (1963) The chemistry of wood. Interscience (Wiley), New York

    Google Scholar 

  84. 84.

    Malmquist L, Soderstrom O (1996) Sorption equilibrium in relation to the spatial distribution of molecules—application to sorption of water by wood. Holzforschung 50:437–448. doi:10.1515/hfsg.1996.50.5.437

    Article  Google Scholar 

  85. 85.

    Sanchez ES, SanJuan N, Simal S et al (1997) Calorimetric techniques applied to the determination of isosteric heat of desorption for potato. J Sci Food Agric 74:57–63

    Article  Google Scholar 

  86. 86.

    Mulet A, Garcia-Reverter J, Sanjuan R et al (1999) Sorption isosteric heat determination by thermal analysis and sorption isotherms. J Food Sci 64:64–68. doi:10.1111/j.1365-2621.1999.tb09862.x

    Article  Google Scholar 

  87. 87.

    Shen DM, Bulow M, Siperstein F et al (2000) Comparison of experimental techniques for measuring isosteric heat of adsorption. Adsorption 6:275–286. doi:10.1023/A:1026551213604

    Article  Google Scholar 

  88. 88.

    Ruckold S, Isengard HD, Hanss J et al (2003) The energy of interaction between water and surfaces of biological reference materials. Food Chem 82:51–59. doi:10.1016/S0308-8146(02)00541-1

    Article  Google Scholar 

  89. 89.

    Lequin S, Chassagne D, Karbowiak T et al (2010) Adsorption equilibria of water vapor on cork. J Agric Food Chem 58:3438–3445. doi:10.1021/jf9039364

    Article  Google Scholar 

Download references

Acknowledgements

This study is part of the AGL2009-12801 Project of the 2008–2011 Spanish National Plan for Scientific Research, Development and Technological Innovation, funded by the Spanish Ministry of Science and Innovation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cristina Simón.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Simón, C., Esteban, L.G., de Palacios, P. et al. Thermodynamic analysis of water vapour sorption behaviour of juvenile and mature wood of Abies alba Mill.. J Mater Sci 50, 7282–7292 (2015). https://doi.org/10.1007/s10853-015-9283-7

Download citation

Keywords

  • Sorption Isotherm
  • Equilibrium Moisture Content
  • Crystallinity Index
  • Isosteric Heat
  • Juvenile Wood