Advertisement

Journal of Materials Science

, Volume 50, Issue 22, pp 7282–7292 | Cite as

Thermodynamic analysis of water vapour sorption behaviour of juvenile and mature wood of Abies alba Mill.

  • Cristina SimónEmail author
  • Luis García Esteban
  • Paloma de Palacios
  • Francisco García Fernández
  • Raquel Martín-Sampedro
  • María E. Eugenio
Original Paper

Abstract

The hygroscopicity and thermodynamic properties of juvenile and mature wood of Abies alba Mill. were studied through the 15, 35 and 50 °C sorption isotherms. The Guggenheim, Anderson and de Boer-Dent model was used to fit the isotherms. The thermodynamic parameters were obtained from the sorption isotherms by applying the integration method of the Clausius–Clapeyron equation. The chemical composition of both types of wood (extractives, lignin and carbohydrate polymer-cellulose and hemicellulose-content) was determined, and infrared spectroscopy and X-ray diffractograms were used to identify any chemical modifications and changes in the crystal structure of the cell wall. The mature wood has more cellulose and hemicellulose content and less extractives content than the juvenile wood. The shorter crystallite length in the mature wood creates a higher amount of amorphous zones and, as a consequence, a higher number of access areas to the –OH groups. The combination of these phenomena explains the different hygroscopic behaviour between the juvenile and the mature wood, as the latter has higher moisture content in the three isotherms. As regards the thermodynamic properties, the amount of energy involved in the sorption process is greater in the mature wood than in the juvenile wood.

Keywords

Sorption Isotherm Equilibrium Moisture Content Crystallinity Index Isosteric Heat Juvenile Wood 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This study is part of the AGL2009-12801 Project of the 2008–2011 Spanish National Plan for Scientific Research, Development and Technological Innovation, funded by the Spanish Ministry of Science and Innovation.

References

  1. 1.
    Popescu CM, Hill CAS, Curling S et al (2014) The water vapour sorption behaviour of acetylated birch wood: how acetylation affects the sorption isotherm and accessible hydroxyl content. J Mater Sci 49:2362–2371. doi: 10.1007/s10853-013-7937-x CrossRefGoogle Scholar
  2. 2.
    Siau JF (1995) Wood: Influence of moisture on physical properties. Department of Wood Science and Forest Products, Virginia Polytechnic Institute and State University, BlackburgGoogle Scholar
  3. 3.
    Almeida G, Hernandez RE (2006) Changes in physical properties of tropical and temperate hardwoods below and above the fiber saturation point. Wood Sci Technol 40:599–613. doi: 10.1007/s00226-006-0083-8 CrossRefGoogle Scholar
  4. 4.
    Hill C (2006) Wood modification. Chemical, thermal and other processes. Wiley, ChichesterCrossRefGoogle Scholar
  5. 5.
    Kretschmann DE (2010) Mechanical properties of wood. In: Wood handbook, wood as an engineering material. General Technical Report FPL-GTR-190. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, pp 1–46Google Scholar
  6. 6.
    Rautkari L, Honkanen J, Hill CAS et al (2014) Mechanical and physical properties of thermally modified scots pine wood in high pressure reactor under saturated steam at 120, 150 and 180 °C. Eur J Wood Prod 72:33–41. doi: 10.1007/s00107-013-0749-5 CrossRefGoogle Scholar
  7. 7.
    Pearson H, Gabbitas B, Ormarsson S (2013) Equilibrium moisture content of radiata pine at elevated temperature and pressure reveals measurement challenges. J Mater Sci 48:332–341. doi: 10.1007/s10853-012-6750-2 CrossRefGoogle Scholar
  8. 8.
    Zobel B, Matthias M, Roberds JH et al (1968) Moisture content of southern pine trees. Technical Report No. 37. School of Forest Resources, North Carolina State University, RaleighGoogle Scholar
  9. 9.
    Lenth CA, Kamke FA (2001) Equilibrium moisture content of wood in high-temperature pressurized environments. Wood Fiber Sci 33:104–118Google Scholar
  10. 10.
    Militz H, Busetto D, Hapla F (2003) Investigation on natural durability and sorption properties of Italian chestnut (Castanea sativa Mill.) from coppice stands. Holz Roh Werkst 61:133–141. doi: 10.1007/S00107-002-0357-2 CrossRefGoogle Scholar
  11. 11.
    Neimsuwan T, Wang S, Taylor AM et al (2008) Statics and kinetics of water vapor sorption of small loblolly pine samples. Wood Sci Technol 42:493–506. doi: 10.1007/s00226-007-0165-2 CrossRefGoogle Scholar
  12. 12.
    Majka J, Olek W (2008) Sorption properties of mature and juvenile lime wood (Tilia sp.). Folia For Polon B 39:65–75Google Scholar
  13. 13.
    Hill C, Moore J, Jalaludin Z et al (2011) Influence of earlywood/latewood and ring position upon water vapour sorption properties of sitka spruce. Int Wood Prod J 2:12–19. doi: 10.1179/2042645311Y.0000000001 CrossRefGoogle Scholar
  14. 14.
    Esteban LG, Simon C, Fernandez FG et al (2015) Juvenile and mature wood of Abies pinsapo Boissier: sorption and thermodynamic properties. Wood Sci Technol 49:725–738. doi: 10.1007/s00226-015-0730-z CrossRefGoogle Scholar
  15. 15.
    Hill CAS, Ramsay J, Gardiner B (2015) Variability in water vapour sorption isotherm in Japanese larch (Larix kaempferi Lamb.)—earlywood and latewood influences. Int Wood Prod J 6:53–59. doi: 10.1179/2042645314Y.0000000090 CrossRefGoogle Scholar
  16. 16.
    Tsoumis G (1991) Science and technology of wood. Kluwer Academic Publishers, New YorkGoogle Scholar
  17. 17.
    Shupe TF, Hse CY, Choong ET et al (1997) Differences in some chemical properties of innerwood and outerwood from five silviculturally different loblolly pine stands. Wood Fiber Sci 29:91–97Google Scholar
  18. 18.
    Zobel BJ, Sprague JR (1998) Juvenile wood in forest trees., Springer Series in Wood ScienceSpringer, BerlinCrossRefGoogle Scholar
  19. 19.
    Bao FC, Jiang ZH, Jiang XM et al (2001) Differences in wood properties between juvenile wood and mature wood in 10 species grown in China. Wood Sci Technol 35:363–375CrossRefGoogle Scholar
  20. 20.
    Rowell RM (2005) Wood chemistry and wood composites. Taylor & Francis, Boca RatonGoogle Scholar
  21. 21.
    Song KL, Yin YF, Salmen L et al (2014) Changes in the properties of wood cell walls during the transformation from sapwood to heartwood. J Mater Sci 49:1734–1742. doi: 10.1007/s10853-013-7860-1 CrossRefGoogle Scholar
  22. 22.
    Aviara NA, Ajibola OO, Oni SA (2004) Sorption equilibrium and thermodynamic characteristics of soya bean. Biosyst Eng 87:179–190. doi: 10.1016/j.biosystemseng.2003.11.006 CrossRefGoogle Scholar
  23. 23.
    Fengel D, Wegener G (1983) Wood chemistry, ultrastructure, reactions. Walter de Gruyter, BerlinCrossRefGoogle Scholar
  24. 24.
    Kolin B, Danon G, Janezic TS (1995) Empirical equation for limit of hygroscopicity. Dry Technol 13:2133–2139. doi: 10.1080/07373939508917069 CrossRefGoogle Scholar
  25. 25.
    Bodirlau R, Teaca CA (2008) Softwood chemical modification by reaction with organic anhydrides. Rev Roum Chim 53:1059–1064Google Scholar
  26. 26.
    Nagy B, Maicaneanu A, Indolean C et al (2013) Cadmium (II) Ions removal from aqueous solutions using Romanian untreated fir tree sawdust—a green biosorbent. Acta Chim Slov 60:263–273Google Scholar
  27. 27.
    Bratasz L, Kozlowska A, Kozlowski R (2012) Analysis of water adsorption by wood using the Guggenheim–Anderson–de Boer equation. Eur J Wood Prod 70:445–451. doi: 10.1007/s00107-011-0571-x CrossRefGoogle Scholar
  28. 28.
    Themelin A, Rebollo J, Thibaut A (1997) Method for defining the behaviour of lignocellulosic produces at sorption: application to tropical wood species. In: Hoffmeyer P (ed.) International conference on wood-water relations. Copenhagen, 16–17 June 1997, pp 17–32Google Scholar
  29. 29.
    Jowitt R, Wagstaffe PJ (1989) The certification of water content of microcrystalline cellulose (MCC) at 10 water activities. Commission of the European Communities. Community Bureau of Reference, EUR 12429, EN, BrusselsGoogle Scholar
  30. 30.
    Arevalo-Pinedo A, Giraldo-Zuñiga AD, Dos Santos FL et al (2004) Sorption isotherms experimental data and mathematical models for murici pulp (Byrsonima sericea). In: Drying (ed.) Proceedings of the 14th international drying symposium (IDS 2004), vol A. Sao Paulo, 22–25 Aug 2004, pp 634–639Google Scholar
  31. 31.
    Jannot Y, Kanmogne A, Talla A et al (2006) Experimental determination and modelling of water desorption isotherms of tropical woods: Afzelia, Ebony, Iroko, Moabi and Obeche. Holz Roh Werkst 64:121–124. doi: 10.1007/s00107-005-0051-2 CrossRefGoogle Scholar
  32. 32.
    Viollaz PE, Rovedo CO (1999) Equilibrium sorption isotherms and thermodynamic properties of starch and gluten. J Food Eng 40:287–292. doi: 10.1016/S0260-8774(99)00066-7 CrossRefGoogle Scholar
  33. 33.
    Esteban LG, de Palacios P, Fernandez FG et al (2008) Sorption and thermodynamic properties of juvenile Pinus sylvestris L. wood after 103 years of submersion. Holzforschung 62:745–751. doi: 10.1515/HF.2008.106 CrossRefGoogle Scholar
  34. 34.
    Esteban LG, de Palacios P, Garcia Fernandez F et al (2009) Sorption and thermodynamic properties of buried juvenile Pinus sylvestris L. wood aged 1170 ± 40 BP. Wood Sci Technol 43:140–151. doi: 10.1007/s00226-009-0261-6 CrossRefGoogle Scholar
  35. 35.
    Sluiter A, Ruiz R, Scarlata C et al (2005) Determination of extractives in biomass. National Renewable Energy Laboratory (NREL) Laboratory Analytical Procedure (LAP). http://www.nrel.gov/biomass/pdfs/42619.pdf. Accessed 13 Mar 2015
  36. 36.
    Sluiter A, Hames B, Ruiz R et al (2011) Determination of structural carbohydrates and lignin in Biomass. National Renewable Energy Laboratory (NREL) Laboratory Analytical Procedure (LAP). http://www.nrel.gov/biomass/pdfs/42618.pdf. Accessed 13 Mar 2015
  37. 37.
    Easty DB, Malcolm EW (1982) Estimation of pulping yield in continuous digesters from carbohydrate and lignin determinations. Tappi J 65:78–80Google Scholar
  38. 38.
    Vaaler D, Syverud K, Seem B et al (2005) Estimating the pulping yield by carbohydrate analysis. Tappi J 4:23–27Google Scholar
  39. 39.
    Jones PD, Schimleck LR, Peter GF et al (2006) Nondestructive estimation of wood chemical composition of sections of radial wood strips by diffuse reflectance near infrared spectroscopy. Wood Sci Technol 40:709–720. doi: 10.1007/s00226-006-0085-6 CrossRefGoogle Scholar
  40. 40.
    Passialis CN (1997) Physico-chemical characteristics of waterlogged archaeological wood. Holzforschung 51:111–113. doi: 10.1515/hfsg.1997.51.2.111 CrossRefGoogle Scholar
  41. 41.
    Huo D, Fang G, Yang Q et al (2013) Enhancement of eucalypt chips’ enzymolysis efficiency by a combination method of alkali impregnation and refining pretreatment. Bioresour Technol 150:73–78. doi: 10.1016/j.biortech.2013.09.130 CrossRefGoogle Scholar
  42. 42.
    Jahan MS, Mun SP (2005) Effect of tree age on the cellulose structure of Nalita wood (Trema orientalis). Wood Sci Technol 39:367–373. doi: 10.1007/s00226-005-0291-7 CrossRefGoogle Scholar
  43. 43.
    Lionetto F, Del Sole R, Cannoletta D et al (2012) Monitoring wood degradation during weathering by cellulose crystallinity. Materials 5:1910–1922. doi: 10.3390/ma5101910 CrossRefGoogle Scholar
  44. 44.
    Thygesen A, Oddershede J, Lilholt H et al (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12:563–576. doi: 10.1007/s10570-005-9001-8 CrossRefGoogle Scholar
  45. 45.
    Bonarski JT, Olek W (2011) Application of the crystalline volume fraction for characterizing the ultrastructural organization of wood. Cellulose 18:223–235. doi: 10.1007/s10570-010-9486-7 CrossRefGoogle Scholar
  46. 46.
    Avramidis S (1997) The basics of sorption. In: Hoffmeyer P (Ed.) International Conference on Wood-Water Relations. Copenhagen, 16-17 June 1997, pp 1–16Google Scholar
  47. 47.
    Peralta PN, Bangi AP, Lee AWC (1997) Thermodynamics of moisture sorption by the giant-timber bamboo. Holzforschung 51:177–182. doi: 10.1515/hfsg.1997.51.2.177 CrossRefGoogle Scholar
  48. 48.
    Nelson RM (1983) A model for sorption of water vapor by cellulosic materials. Wood Fiber Sci 15:8–22Google Scholar
  49. 49.
    Zaihan J, Hill CAS, Hashim WS et al (2011) Analysis of the water vapour sorption isotherms of oil palm trunk and rubberwood. J Trop For Sci 23:97–105Google Scholar
  50. 50.
    Christensen GN, Kelsey KE (1959) The rate of sorption of water vapor by wood. Holz Roh Werkst 17:178–188CrossRefGoogle Scholar
  51. 51.
    Wangaard FF, Granados LA (1967) The effect of extractives on water-vapor sorption by wood. Wood Sci Technol 1:253–277CrossRefGoogle Scholar
  52. 52.
    Choong ET, Achmadi SS (1991) Effect of extractives on moisture sorption and shrinkage in tropical woods. Wood Fiber Sci 23:185–196Google Scholar
  53. 53.
    Hernandez RE (2007) Moisture sorption properties of hardwoods as affected by their extraneous substances, wood density, and interlocked grain. Wood Fiber Sci 39:132–145Google Scholar
  54. 54.
    Engelund ET, Thygesen LG, Svensson S et al (2013) A critical discussion of the physics of wood-water interactions. Wood Sci Technol 47:141–161. doi: 10.1007/s00226-012-0514-7 CrossRefGoogle Scholar
  55. 55.
    Fernandez FG, Esteban LG, de Palacios P et al (2014) Sorption and thermodynamic properties of Terminalia superba Engl. & Diels and Triplochiton scleroxylon K. Schum. through the 15, 35 and 50 °C sorption isotherms. Eur J Wood Prod 72:99–106. doi: 10.1007/s00107-013-0752-x CrossRefGoogle Scholar
  56. 56.
    Singh PC, Singh RK (1996) Application of GAB model for water sorption isotherms of food products. J Food Process Preserv 20:203–220. doi: 10.1111/j.1745-4549.1996.tb00743.x CrossRefGoogle Scholar
  57. 57.
    Kouhila M, Kechaou N, Otmani M et al (2002) Experimental study of sorption isotherms and drying kinetics of Moroccan Eucalyptus globulus. Dry Technol 20:2027–2039. doi: 10.1081/DRT-120015582 CrossRefGoogle Scholar
  58. 58.
    Quirijns EJ, van Boxtel AJB, van Loon WKP et al (2005) An improved experimental and regression methodology for sorption isotherms. J Sci Food Agric 85:175–185. doi: 10.1002/jsfa.1773 CrossRefGoogle Scholar
  59. 59.
    Chirife J, Timmermann EO, Iglesias HA et al (1992) Some features of the parameter-K of the Gab equation as applied to sorption isotherms of selected food materials. J Food Eng 15:75–82. doi: 10.1016/0260-8774(92)90041-4 CrossRefGoogle Scholar
  60. 60.
    Maskan M, Gogus F (1997) The fitting of various models to water sorption isotherms of pistachio nut paste. J Food Eng 33:227–237. doi: 10.1016/S0260-8774(97)00061-7 CrossRefGoogle Scholar
  61. 61.
    Esteban LG, Fernandez FG, Casasus AG et al (2006) Comparison of the hygroscopic behaviour of 205-year-old and recently cut juvenile wood from Pinus sylvestris L. Ann For Sci 63:309–317. doi: 10.1051/forest:2006010 CrossRefGoogle Scholar
  62. 62.
    Esteban LG, de Palacios P, Fernandez FG et al (2008) Sorption and thermodynamic properties of old and new Pinus sylvestris wood. Wood Fiber Sci 40:111–121Google Scholar
  63. 63.
    Yokoyama T, Kadla JF, Chang HM (2002) Microanalytical method for the characterization of fiber components and morphology of woody plants. J Agric Food Chem 50:1040–1044. doi: 10.1021/jf011173q CrossRefGoogle Scholar
  64. 64.
    Illic J, Northway R, Pongracic S (2003) Juvenile wood characteristics, effects and identification: literature review. Forest & Wood Products Research & Development Corporation, VictoriaGoogle Scholar
  65. 65.
    Bertaud F, Holmbom B (2004) Chemical composition of earlywood and latewood in Norway spruce heartwood, sapwood and transition zone wood. Wood Sci Technol 38:245–256. doi: 10.1007/s00226-004-0241-9 CrossRefGoogle Scholar
  66. 66.
    Peura M, Saren MP, Laukkanen J et al (2008) The elemental composition, the microfibril angle distribution and the shape of the cell cross-section in Norway spruce xylem. Trees-Struct Funct 22:499–510. doi: 10.1007/s00468-008-0210-2 CrossRefGoogle Scholar
  67. 67.
    Panshin AJ, de Zeeuw C (1980) Textbook of wood technology, 4th edn. McGraw-Hill Book Company, New YorkGoogle Scholar
  68. 68.
    Kollmann F (1951) Technologie des Holzes und der Holzwekstoffe, vol I. Springer, BerlinGoogle Scholar
  69. 69.
    Larson PR (1966) Changes in chemical composition of wood cell walls associated with age in Pinus resinosa. For Prod J 16:37–45Google Scholar
  70. 70.
    Nikitin NL (1966) The chemistry of cellulose and wood. Israel Program for Scientific Translations, JerusalemGoogle Scholar
  71. 71.
    Latorraca JVF, Dunisch O, Koch G (2011) Chemical composition and natural durability of juvenile and mature heartwood of Robinia pseudoacacia L. An Acad Bras Cienc 83:1059–1068CrossRefGoogle Scholar
  72. 72.
    Esteban LG, de Palacios P, Fernandez FG et al (2010) Effects of burial of Quercus spp. wood aged 5910 ± 250 BP on sorption and thermodynamic properties. Int Biodeter Biodegr 64:371–377. doi: 10.1016/j.ibiod.2010.01.010 CrossRefGoogle Scholar
  73. 73.
    Andersson S, Serimaa R, Paakkari T et al (2003) Crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies). J Wood Sci 49:531–537. doi: 10.1007/s10086-003-0518-x Google Scholar
  74. 74.
    Andersson S, Wikberg H, Pesonen E et al (2004) Studies of crystallinity of Scots pine and Norway spruce cellulose. Trees-Struct Funct 18:346–353. doi: 10.1007/s00468-003-0312-9 CrossRefGoogle Scholar
  75. 75.
    Li XJ, Cao ZY, Wei ZY et al (2011) Equilibrium moisture content and sorption isosteric heats of five wheat varieties in China. J Stored Prod Res 47:39–47. doi: 10.1016/j.jspr.2010.10.001 CrossRefGoogle Scholar
  76. 76.
    Telis VRN, Gabas AL, Menegalli FC et al (2000) Water sorption thermodynamic properties applied to persimmon skin and pulp. Thermochim Acta 343:49–56. doi: 10.1016/S0040-6031(99)00379-2 CrossRefGoogle Scholar
  77. 77.
    McMinn WAM, Magee TRA (2003) Thermodynamic properties of moisture sorption of potato. J Food Eng 60:157–165. doi: 10.1016/S0260-8774(03)00036-0 CrossRefGoogle Scholar
  78. 78.
    Tsami E (1991) Net isosteric heat of sorption in dried fruits. J Food Eng 14:327–335CrossRefGoogle Scholar
  79. 79.
    Vrentas JS, Vrentas CM (1996) Hysteresis effects for sorption in glassy polymers. Macromolecules 29:4391–4396. doi: 10.1021/ma950969l CrossRefGoogle Scholar
  80. 80.
    Lu YF, Pignatello JJ (2002) Demonstration of the “Conditioning effect” in soil organic matter in support of a pore deformation mechanism for sorption hysteresis. Environ Sci Technol 36:4553–4561. doi: 10.1021/es020554x CrossRefGoogle Scholar
  81. 81.
    Lu YF, Pignatello JJ (2004) History-dependent sorption in humic acids and a lignite in the context of a polymer model for natural organic matter. Environ Sci Technol 38:5853–5862. doi: 10.1021/es049774w CrossRefGoogle Scholar
  82. 82.
    Hill CAS, Norton AJ, Newman G (2010) The water vapour sorption properties of Sitka spruce determined using a dynamic vapour sorption apparatus. Wood Sci Technol 44:497–514. doi: 10.1007/s00226-010-0305-y CrossRefGoogle Scholar
  83. 83.
    Browning BL (1963) The chemistry of wood. Interscience (Wiley), New YorkGoogle Scholar
  84. 84.
    Malmquist L, Soderstrom O (1996) Sorption equilibrium in relation to the spatial distribution of molecules—application to sorption of water by wood. Holzforschung 50:437–448. doi: 10.1515/hfsg.1996.50.5.437 CrossRefGoogle Scholar
  85. 85.
    Sanchez ES, SanJuan N, Simal S et al (1997) Calorimetric techniques applied to the determination of isosteric heat of desorption for potato. J Sci Food Agric 74:57–63CrossRefGoogle Scholar
  86. 86.
    Mulet A, Garcia-Reverter J, Sanjuan R et al (1999) Sorption isosteric heat determination by thermal analysis and sorption isotherms. J Food Sci 64:64–68. doi: 10.1111/j.1365-2621.1999.tb09862.x CrossRefGoogle Scholar
  87. 87.
    Shen DM, Bulow M, Siperstein F et al (2000) Comparison of experimental techniques for measuring isosteric heat of adsorption. Adsorption 6:275–286. doi: 10.1023/A:1026551213604 CrossRefGoogle Scholar
  88. 88.
    Ruckold S, Isengard HD, Hanss J et al (2003) The energy of interaction between water and surfaces of biological reference materials. Food Chem 82:51–59. doi: 10.1016/S0308-8146(02)00541-1 CrossRefGoogle Scholar
  89. 89.
    Lequin S, Chassagne D, Karbowiak T et al (2010) Adsorption equilibria of water vapor on cork. J Agric Food Chem 58:3438–3445. doi: 10.1021/jf9039364 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Cristina Simón
    • 1
    Email author
  • Luis García Esteban
    • 1
  • Paloma de Palacios
    • 1
  • Francisco García Fernández
    • 1
  • Raquel Martín-Sampedro
    • 2
  • María E. Eugenio
    • 2
  1. 1.Departamento Sistemas y Recursos Naturales. Cátedra de Tecnología de la Madera. Escuela Técnica Superior de Ingenieros de MontesUniversidad Politécnica de MadridMadridSpain
  2. 2.Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIAMadridSpain

Personalised recommendations