Journal of Materials Science

, Volume 50, Issue 21, pp 7058–7063 | Cite as

Micropillar compression testing of powders

  • Emily L. Huskins
  • Zachary C. Cordero
  • Christopher A. Schuh
  • Brian E. Schuster
Original Paper

Abstract

An experimental design for microcompression on individual powder particles is proposed as a means of testing novel materials without the challenges associated with consolidation to produce bulk specimens. This framework is demonstrated on an amorphous tungsten alloy powder, and yields reproducible measurements of the yield strength (4.5 ± 0.3 GPa) and observations of the deformation mode (in this case, serrated flow by shear localization).

References

  1. 1.
    Khalajhedayati A, Rupert TJ (2014) Emergence of localized plasticity and failure through shear banding during microcompression of a nanocrystalline alloy. Acta Mater 65:326–337CrossRefGoogle Scholar
  2. 2.
    Schuster BE, Wei Q, Zhang H, Ramesh KT (2006) Microcompression of nanocrystalline nickel. Appl Phys Lett 88:103112–103113CrossRefGoogle Scholar
  3. 3.
    Gu XW, Loynachan CN, Wu Z et al (2012) Size-dependent deformation of nanocrystalline Pt nanopillars. Nano Lett 12:6385–6392CrossRefGoogle Scholar
  4. 4.
    Jang D, Greer JR (2011) Size-induced weakening and grain boundary-assisted deformation in 60 nm grained Ni nanopillars. Scr Mater 64:77–80CrossRefGoogle Scholar
  5. 5.
    Mara NA, Bhattacharyya D, Hirth JP et al (2010) Mechanism for shear banding in nanolayered composites. Appl Phys Lett 97:021909CrossRefGoogle Scholar
  6. 6.
    Nagoshi T, Shibata A, Todaka Y et al (2014) Mechanical behavior of a microsized pillar fabricated from ultrafine-grained ferrite evaluated by a microcompression test. Acta Mater 73:12–18CrossRefGoogle Scholar
  7. 7.
    Ligda JP, Schuster BE, Wei Q (2012) Transition in the deformation mode of nanocrystalline tantalum processed by high-pressure torsion. Scr Mater 67:253–256CrossRefGoogle Scholar
  8. 8.
    Wei Q, Pan ZL, Wu XL et al (2011) Microstructure and mechanical properties at different length scales and strain rates of nanocrystalline tantalum produced by high-pressure torsion. Acta Mater 59:2423–2436CrossRefGoogle Scholar
  9. 9.
    Edalati K, Toh S, Iwaoka H et al (2012) Ultrahigh strength and high plasticity in TiAl intermetallics with bimodal grain structure and nanotwins. Scr Mater 67:814–817CrossRefGoogle Scholar
  10. 10.
    Williams JJ, Walters JL, Wang MY et al (2013) Extracting constitutive stress–strain behavior of microscopic phases by micropillar compression. JOM 65:226–233CrossRefGoogle Scholar
  11. 11.
    Stewart JL, Jiang L, Williams JJ, Chawla N (2012) Prediction of bulk tensile behavior of dual phase stainless steels using constituent behavior from micropillar compression experiments. Mater Sci Eng A 534:220–227CrossRefGoogle Scholar
  12. 12.
    Ghassemi-Armaki H, Maaß R, Bhat SP et al (2014) Deformation response of ferrite and martensite in a dual-phase steel. Acta Mater 62:197–211CrossRefGoogle Scholar
  13. 13.
    Okamoto NL, Kashioka D, Inomoto M et al (2013) Compression deformability of Γ and ζ Fe–Zn intermetallics to mitigate detachment of brittle intermetallic coating of galvannealed steels. Scr Mater 69:307–310CrossRefGoogle Scholar
  14. 14.
    Wheeler JM, Raghavan R, Chawla V et al (2014) Deformation of hard coatings at elevated temperatures. Surf Coat Technol 254:382–387CrossRefGoogle Scholar
  15. 15.
    Greer JR, Oliver WC, Nix WD (2005) Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater 53:1821–1830CrossRefGoogle Scholar
  16. 16.
    Uchic MD, Dimiduk DM, Florando JN, Nix WD (2004) Sample dimensions influence strength and crystal plasticity. Science 305:986–989CrossRefGoogle Scholar
  17. 17.
    Porter WJ, Uchic MD, John R, Barnas NB (2009) Compression property determination of a gamma titanium aluminide alloy using micro-specimens. Scr Mater 61:678–681CrossRefGoogle Scholar
  18. 18.
    Girault B, Schneider AS, Frick CP, Arzt E (2010) Strength effects in micropillars of a dispersion strengthened superalloy. Adv Eng Mater 12:385–388CrossRefGoogle Scholar
  19. 19.
    Kiener D, Hosemann P, Maloy SA, Minor AM (2011) In situ nanocompression testing of irradiated copper. Nat Mater 10:608–613CrossRefGoogle Scholar
  20. 20.
    Gu R, Ngan AHW (2013) Size effect on the deformation behavior of duralumin micropillars. Scr Mater 68:861–864CrossRefGoogle Scholar
  21. 21.
    Dimiduk DM, Uchic MD, Rao SI et al (2007) Overview of experiments on microcrystal plasticity in FCC-derivative materials: selected challenges for modelling and simulation of plasticity. Model Simul Mater Sci Eng 15:135CrossRefGoogle Scholar
  22. 22.
    Shade PA, Uchic MD, Dimiduk DM et al (2012) Size-affected single-slip behavior of René N5 microcrystals. Mater Sci Eng A 535:53–61CrossRefGoogle Scholar
  23. 23.
    Pouchon MA, Chen J, Ghisleni R et al (2008) Characterization of irradiation damage of ferritic ODS alloys with advanced micro-sample methods. Exp Mech 50:79–84CrossRefGoogle Scholar
  24. 24.
    Schuster BE, Wei Q, Ervin MH et al (2007) Bulk and microscale compressive properties of a Pd-based metallic glass. Scr Mater 57:517–520CrossRefGoogle Scholar
  25. 25.
    Volkert CA, Donohue A, Spaepen F (2008) Effect of sample size on deformation in amorphous metals. J Appl Phys 103:083539–083539-6. doi:10.1063/1.2884584 CrossRefGoogle Scholar
  26. 26.
    Schuster BE, Wei Q, Hufnagel TC, Ramesh KT (2008) Size-independent strength and deformation mode in compression of a Pd-based metallic glass. Acta Mater 56:5091–5100CrossRefGoogle Scholar
  27. 27.
    Cho K, Schuh CA (2015) W-based amorphous phase stable to high temperatures. Acta Mater 85:331–342CrossRefGoogle Scholar
  28. 28.
    Field JS, Swain MV (1993) A simple predictive model for spherical indentation. J Mater Res 8:297–306CrossRefGoogle Scholar
  29. 29.
    Francis HA (1976) Phenomenological analysis of plastic spherical indentation. J Eng Mater Technol 98:272–281CrossRefGoogle Scholar
  30. 30.
    Zhang H, Schuster BE, Wei Q, Ramesh KT (2006) The design of accurate micro-compression experiments. Scr Mater 54:181–186CrossRefGoogle Scholar
  31. 31.
    Uchic MD, Dimiduk DM (2005) A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing. Mater Sci Eng A 400–401:268–278CrossRefGoogle Scholar
  32. 32.
    Underwood EE (1970) Quantitative stereology. Addison-Wesley, Reading, MAGoogle Scholar
  33. 33.
    Maurice D, Courtney TH (1995) Modeling of mechanical alloying: Part III. Applications of computational programs. Metall Mater Trans A 26:2437–2444CrossRefGoogle Scholar
  34. 34.
    Inoue A, Takeuchi A (2011) Recent development and application products of bulk glassy alloys. Acta Mater 59:2243–2267. doi:10.1016/j.actamat.2010.11.027 CrossRefGoogle Scholar
  35. 35.
    Chen M (2008) Mechanical behavior of metallic glasses: microscopic understanding of strength and ductility. Annu Rev Mater Res 38:445–469CrossRefGoogle Scholar
  36. 36.
    Lai YH, Lee CJ, Cheng YT et al (2008) Bulk and microscale compressive behavior of a Zr-based metallic glass. Scr Mater 58:890–893CrossRefGoogle Scholar
  37. 37.
    Chen CQ, Pei YT, De Hosson JTM (2010) Effects of size on the mechanical response of metallic glasses investigated through in situ TEM bending and compression experiments. Acta Mater 58:189–200CrossRefGoogle Scholar
  38. 38.
    Bharathula A, Lee S-W, Wright WJ, Flores KM (2010) Compression testing of metallic glass at small length scales: effects on deformation mode and stability. Acta Mater 58:5789–5796CrossRefGoogle Scholar
  39. 39.
    Jang D, Gross CT, Greer JR (2011) Effects of size on the strength and deformation mechanism in Zr-based metallic glasses. Int J Plast 27:858–867CrossRefGoogle Scholar
  40. 40.
    Ke HB, Sun BA, Liu CT, Yang Y (2014) Effect of size and base-element on the jerky flow dynamics in metallic glass. Acta Mater 63:180–190CrossRefGoogle Scholar
  41. 41.
    Bharathula A, Flores KM (2011) Variability in the yield strength of a metallic glass at micron and submicron length scales. Acta Mater 59:7199–7205CrossRefGoogle Scholar
  42. 42.
    Wheeler JM, Raghavan R, Michler J (2012) Temperature invariant flow stress during microcompression of a Zr-based bulk metallic glass. Scr Mater 67:125–128CrossRefGoogle Scholar
  43. 43.
    Wang C-C, Ding J, Cheng Y-Q et al (2012) Sample size matters for Al88Fe7Gd5 metallic glass: smaller is stronger. Acta Mater 60:5370–5379CrossRefGoogle Scholar
  44. 44.
    Tönnies D, Maaß R, Volkert CA (2014) Room temperature homogeneous ductility of micrometer-sized metallic glass. Adv Mater 26:5715–5721CrossRefGoogle Scholar
  45. 45.
    Kuzmin OV, Pei YT, Chen CQ, De Hosson JTM (2012) Intrinsic and extrinsic size effects in the deformation of metallic glass nanopillars. Acta Mater 60:889–898CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2015

Authors and Affiliations

  1. 1.Oak Ridge Institute for Science and Education Postdoctoral Fellowship ProgramArmy Research LaboratoryAberdeen Proving GroundUSA
  2. 2.Department of Materials Science and EngineeringMITCambridgeUSA
  3. 3.RDRL-WML-H, Weapons and Materials Research DirectorateArmy Research LaboratoryAberdeen Proving GroundUSA
  4. 4.Mechanical Engineering DepartmentUnited States Naval AcademyAnnapolisUSA

Personalised recommendations