Journal of Materials Science

, Volume 50, Issue 20, pp 6730–6738 | Cite as

Superior strength of carbon steel with an ultrafine-grained microstructure and its enhanced thermal stability

  • M. V. KaravaevaEmail author
  • S. K. Kiseleva
  • A. V. Ganeev
  • E. O. Protasova
  • M. M. Ganiev
  • L. A. Simonova
  • R. Z. Valiev
Original Paper


The paper presents the results of a study on the microstructure and mechanical properties of a medium-carbon steel (0.45 % C) processed by severe plastic deformation (SPD) via high-pressure torsion (HPT). Martensite quenching was first applied to the material, and then HPT processing was conducted at a temperature of 350 °C. As a result, a nanocomposite type microstructure is formed: an ultrafine-grained (UFG) ferrite matrix with fine cementite particles located predominantly at the boundaries of ferrite grains. The processed steel is characterized by a high-strength state, with an ultimate tensile strength over 2500 MPa. Special attention is given to analysis of the thermal stability of the microstructure and properties of the steel after HPT processing in comparison with quenching. It is shown that the thermal stability of the UFG structure produced by HPT is visibly higher than that of quenching-induced martensite. The origin of the enhanced strength and thermal stability of the UFG steel is discussed.


Martensite Cementite Severe Plastic Deformation Martensite Plate Supersaturated Solid Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



M.V. Karavaeva gratefully acknowledges the financial support from the RFBR, project No.14-08-90429. M. M. Ganiev and L. A. Simonova gratefully acknowledge the funding through the Russian Government Program of Competitive Growth of Kazan Federal University. R.Z. Valiev gratefully acknowledges the Russian Federal Ministry for Education and Science (through RZV Grant No. 14.B25.31.0017). A.V.Ganeev is greatly acknowledges of A.von Humboldt foundation (Group Linkage Project Fokoop —DEU/1052606).


  1. 1.
    Whang SH (2011) Nanostructured metals and alloys. Processing, microstructure, mechanical properties and applications. Woodhead Published Limited, CambridgeCrossRefGoogle Scholar
  2. 2.
    Okitsu Y, Takata N, Tsuji N (2009) A new route of fabricate ultrafine-grained structures in carbon steels without severe plastic deformation. Scripta Materialia 60:76–79Google Scholar
  3. 3.
    Valiev RZ, Zhilyaev AP, Langdon TG (2013) Bulk nanostructured materials: fundamentals and applications. Wiley, HobokenCrossRefGoogle Scholar
  4. 4.
    Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci 45(2):102–189CrossRefGoogle Scholar
  5. 5.
    Valiev RZ, Alexandrov IV (2007) Bulk nanostructured metallic materials. Akademkniga, Moscow (in Russian)Google Scholar
  6. 6.
    Haddad M, Ivanisenko Yu, Courtois-Manara E et al (2015) In-Situ tensile test of high strength nanocrystalline bainitic steel. Mater Sci Eng, A 620:30–35CrossRefGoogle Scholar
  7. 7.
    Valiev RZ (2004) Nanostructuring of metals by severe plastic deformation for advanced properties. Nat Mater 3:511–516CrossRefGoogle Scholar
  8. 8.
    Tsuji N, Kamikava N, Ueji R et al (2008) Managing both strength and ductility in ultrafine grained steels. ISIJ Int 48:1114–1121CrossRefGoogle Scholar
  9. 9.
    Tsuji N, Ito Y, Saito Y et al (2002) Strength and ductility of ultra grained aluminum and iron produced by ARB and annealing. Scripta Mat 47:893–899CrossRefGoogle Scholar
  10. 10.
    Ivanisenko Yu, Lojkowski W, Valiev RZ et al (2003) The mechanism of formation of nanostructure and dissolution of cementite in a pearlitic steel during high pressure torsion. Acta Mater 51:5555–5570CrossRefGoogle Scholar
  11. 11.
    Ivanisenko Yu, Wunderlich RK, Valiev RZ et al (2003) Annealing behavior of nanostructured carbon steel produced by severe plastic deformation. Scr Mater 49:947–952CrossRefGoogle Scholar
  12. 12.
    Ganeev AV, Karavaeva MV, Sauvage X et al (2014) On the nature of high-strength state of carbon steel produced by severe plastic deformation. IOP Conf. Series. Mate Sci Eng 63:012128Google Scholar
  13. 13.
    Karavaeva MV, Kiseleva SK, Abramova MM, Ganeev AV, Valiev RZ (2014) Microstructure, properties, and failure characteristics of medium-carbon steel subjected to severe plastic deformation, IOP Conf Ser 63(2014):012056CrossRefGoogle Scholar
  14. 14.
    Karavaeva MV, Nurieva SK, Zaripov NG et al (2012) Microstructure and mechanical properties of medium-carbon steel subjected to severe plastic deformation. Met Sci Heat Treat 54:155–159CrossRefGoogle Scholar
  15. 15.
    Abramova MM, Enikeev NA, Valiev RZ et al (2014) Grain boundary segregation induced strengthening of an ultrafine-grained austenitic stainless steel. Mat. Letters 136:349–352CrossRefGoogle Scholar
  16. 16.
    Valiev RZ, Enikeev NA, Murashkin M Yu et al (2010) On the origin of the extremely high strength of ultrafine-grained Al alloys produced by severe plastic deformation. Scr. Mater 63:949–952CrossRefGoogle Scholar
  17. 17.
    Wang J, Xu C, Wang Y et al (2003) Microstructure and properties of a low carbon steel after equal channel angular pressing. In: Zehetbauer MJ, Valiev RZ (eds) Nanomaterials by severe plastic deformation. J WileyVCH, Weinheim, pp 829–834Google Scholar
  18. 18.
    Zrnik J, Pippan R, Scheriau S et al (2010) Microstructure and mechanical properties of UFG medium carbon steel processed by HTP at increased temperature. J Mater Sci 45:4822–4826CrossRefGoogle Scholar
  19. 19.
    Zrnik J, Dobatkin S, Stejskal O et al (2007) Deformation behaviour and ultrafine graned structure development in steels with different carbon content subjected to severe plastic deformation. Key Eng. Mat. 345–346:45–48CrossRefGoogle Scholar
  20. 20.
    Valiev RZ, Enikeev NA, Langdon TG (2011) Towards superstrength of nanostructured metals and alloys, produced by SPD. Kovove Mater 49:1–9Google Scholar
  21. 21.
    Tsuji N, Ueji R, Minamino Y et al (2002) A new and simple process to obtain nano-structured bulk low-carbon steel with superior mechanical property. Scripta Mater 46:305–310CrossRefGoogle Scholar
  22. 22.
    Tsuji N (2010) New routes for fabricating ultrafine grained microstructures in bulky steels without very high strains. Adv Eng Mater 12:701–707CrossRefGoogle Scholar
  23. 23.
    Ueji R, Tsuji N, Minamino Y et al (2002) Ultragrain refinement of plain low carbon steel by cold-rolling and annealing of martensite. Acta Mater 50:4177–4189CrossRefGoogle Scholar
  24. 24.
    Williamson G, Smallman R III (1956) Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye-Scherrer spectrum. Philos Mag 1:34–45CrossRefGoogle Scholar
  25. 25.
    Kurmanaeva L, Ivanisenko Yu, Markmann J, Kübel C, Chuvilin A, Doyle S, Valiev RZ, Fecht H-J (2010) Grain refinement and mechanical properties in ultrafine grained Pd and Pd–Ag alloys produced by HPT. Mater Sci Eng A 527:1776–1783CrossRefGoogle Scholar
  26. 26.
    Nishiyama Z (1978) Martensitic transformations. Academic Press, New YorkGoogle Scholar
  27. 27.
    Askeland D., Wrigth W. (2013) Essentials of materials science & engineering. SI Edition, Cengage Learning Stamford, USAGoogle Scholar
  28. 28.
    Goldstein MI, Litvinov VS, Bronfin BM (1986) Metal physics of the high-strength state. Metallurgiya, Moscow (in Russian) Google Scholar
  29. 29.
    Halfa H (2014) Recent Trends in Producing Ultrafine Grained Steels. J Miner Mater Character Eng. doi: 10.4236/jmmce.2014.25047 Google Scholar
  30. 30.
    Kozlov EV, Zhdanov AN, Popova NA, Pekarskaya EE, Koneva NA (2004) Subgrain structure and internal stress fields in UFG materials: problem of Hall-Petch relation. Mat Sci Eng A 387–389:789–794CrossRefGoogle Scholar
  31. 31.
    Kamikawa N (2014) Y. ABE, G. Miyamoto, Y. Funakawa and T. Furuhara Tensile behavior of Ti, Mo-added low carbon steels with interphase precipitation. ISIJ Int 54(1):212–221CrossRefGoogle Scholar
  32. 32.
    Takaki S (2010) Review on the Hall-Petch relation in ferritic steel. Mat Sci Forum 654–656:11–16CrossRefGoogle Scholar
  33. 33.
    Malow TR, Koch CC (1998) Mechanical properties, ductility, and grain size of nanocrystalline iron produced by mechanical attrition. Met Mater Trans A 29:2285–2295CrossRefGoogle Scholar
  34. 34.
    Nam WJ, Bae CM, Lee CS (2002) Effect of carbon content on the Hall-Petch parameter in cold drawn pearlitic steel wires. J Mat Sci 37:2243–2249CrossRefGoogle Scholar
  35. 35.
    Armstrong RW (2013) Hall-Petch analysis of dislocation pileups in thin material layers and in nanopolycrystals. J Mater Res 28:1792–1798CrossRefGoogle Scholar
  36. 36.
    Takaki S (2010) Effect of carbon and nitrogen on the Hall–Petch coefficient of ferritic iron. Mater Sci Forum 638–642:173–186Google Scholar
  37. 37.
    Sauvage X, Ganeev A, Ivanisenko Yu et al (2012) Grain boundary segregation in ufg alloys processed by severe plastic deformation. Adv Eng Mater. doi: 10.1002/adem.201200060 Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • M. V. Karavaeva
    • 1
    Email author
  • S. K. Kiseleva
    • 1
  • A. V. Ganeev
    • 1
  • E. O. Protasova
    • 1
  • M. M. Ganiev
    • 2
  • L. A. Simonova
    • 2
  • R. Z. Valiev
    • 1
    • 3
  1. 1.Ufa State Aviation Technical UniversityUfaRussia
  2. 2.Kazan Federal UniversityKazanRussia
  3. 3.Saint PetersburgState UniversitySaint PetersburgRussia

Personalised recommendations