Journal of Materials Science

, Volume 50, Issue 20, pp 6713–6718 | Cite as

Thermal conductivity of β-FeSi2/Si endogenous composites formed by the eutectoid decomposition of α-Fe2Si5

  • U. Ail
  • S. GorsseEmail author
  • S. Perumal
  • M. Prakasam
  • A. Umarji
  • S. Vivès
  • P. Bellanger
  • R. Decourt
Original Paper


Thermoelectric properties of semiconducting β-FeSi2 containing a homogeneous distribution of Si secondary phase have been studied. The synthesis was carried out using arc melting followed by the densification by uniaxial hot pressing. Endogenous β-FeSi2/Si composites were produced by the eutectoid decomposition of high-temperature α-Fe2Si5 phase. The aging heat treatments have been carried out at various temperatures below the equilibrium eutectoid temperature for various durations in order to tune the size of the eutectoid product. Thermal properties of the samples were studied in the temperature range of 100–350 °C. The microstructural investigations support the fact that the finest microstructure generated through the eutectoid decomposition of the α-Fe2Si5 metastable phase is responsible of the phonon scattering. The results suggest an opportunity to produce bulk iron silicide alloys with reduced thermal conductivity in order to enhance its thermoelectric performance.


Aging Temperature Thermoelectric Property Seebeck Coefficient Phonon Scattering Lattice Thermal Conductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by a research grant from the Indo-French Centre for the Promotion of Advanced Research, IFCPAR/CEFIPRA (Program No. 4008-2).


  1. 1.
    Rowe DM (1995) CRC hand book of thermoelectrics. CRC Press, New York, p 287CrossRefGoogle Scholar
  2. 2.
    Fedorov MI (2009) Thermoelectric silicides: past, present and future. J Thermoelectr 2:51–60Google Scholar
  3. 3.
    Lange H (1997) Electronic properties of semiconducting silicides. Phys Status Solidi B 201:3–65CrossRefGoogle Scholar
  4. 4.
    Chang S, Nakano M, Matsumaru K, Ishizaki K, Takeda M (2006) High-temperature oxidation of sintered β-FeSi2 bodies at elevated temperatures. J Jpn Inst Metals 70:20–24CrossRefGoogle Scholar
  5. 5.
    Uemura K, Nishida I (1988) Thermoelectric semiconductors and their applications. Nikkan-Kogyo, Tokyo. p. 178Google Scholar
  6. 6.
    Snyder GJ, Toberer ES (2008) Complex thermoelectric materials. Nat Mater 7:105–114CrossRefGoogle Scholar
  7. 7.
    Ito M, Nagi H, Katsuyama S, Majima K (2001) Effects of Ti, Nb and Zr doping on thermoelectric performance of β-FeSi2. J Alloys Compd 315:251–258CrossRefGoogle Scholar
  8. 8.
    Ito M, Nagi N, Oda E, Katsuyama S, Majima K (2002) Effects of P doping on the thermoelectric properties of β-FeSi2. J Appl Phys 91:2138–2142CrossRefGoogle Scholar
  9. 9.
    Gorsse S, Bauer PB, Decourt R, Sellier E (2010) Microstructure engineering design for thermoelectric materials: an approach to minimize thermal diffusivity. Chem Mater 22:988–993CrossRefGoogle Scholar
  10. 10.
    Gorsse S, Bellanger P, Brechet Y, Sellier E, Umarji AM, Ail U (2011) Nanostructuration via solid state transformation as a strategy for improving the thermoelectric efficiency of PbTe alloys. Acta Mater 59:7425–7437CrossRefGoogle Scholar
  11. 11.
    Bellanger P, Gorsse S, Bernard-Granger G, Navone C, Redjaimia A, Vivès S (2015) Effect of microstructure on the thermal conductivity of nanostructured Mg2(Si, Sn) thermoelectric alloys: an experimental and modeling approach. Acta Mater 95:102–110CrossRefGoogle Scholar
  12. 12.
    Perumal S, Gorsse S, Ail U, Prakasam M, Chevalier B, Umarji AM (2013) Thermoelectric properties of chromium disilicide prepared by mechanical alloying. J Mater Sci 48:6018–6024. doi: 10.1007/s10853-013-7398-2 CrossRefGoogle Scholar
  13. 13.
    Nandihalli N, Lahwal A, Thompson D, Holgate TC, Tritt TM, Dassylva-Raymond V, Kiss LI, Sellier E, Gorsse S, Kleinke H (2013) Thermoelectric properties of composites made of Ni0.05Mo3Sb5.4Te1.6 and fullerene. J Solid State Chem 203:25–30CrossRefGoogle Scholar
  14. 14.
    Perumal S, Gorsse S, Ail U, Prakasam M, Vivès S, Decourt R, Umarji AM (2015) Low thermal conductivity of endogenous manganese silicide/Si composites for thermoelectricity. Mater Lett 155:41–43CrossRefGoogle Scholar
  15. 15.
    Nandihalli N, Gorsse S, Kleinke H (2015) Effects of additions of carbon nanotubes on the thermoelectric properties of Ni0.05Mo3Sb5.4Te1.6. J. Solid State Chem 226:164–169CrossRefGoogle Scholar
  16. 16.
    Heinz NA, Ikeda T, Pei Y, Snyder GJ (2013) Applying quantitative microstructure control in advanced functional composites. Adv Funct Mater 24:2135–2153CrossRefGoogle Scholar
  17. 17.
    Massalsky TB (ed) (1986) Binary alloy phase diagram. ASM, Metals Park, p 1108Google Scholar
  18. 18.
    Nishida I, Masumoto K, Okamoto M, Kojima T (1985) Formation of FeSi2 from sintered FeSi-Fe2Si5 eutectic alloy. Mater Trans JIM 26:369–374Google Scholar
  19. 19.
    Jiang J, Matsugi K, Sasaki G, Yanagisawa O (2005) Resistivity study of eutectoid decomposition kinetics of α-Fe2Si5 alloy. Mater Trans 46:720–725CrossRefGoogle Scholar
  20. 20.
    Nagase T, Yamauchi I, Ohnaka I (2001) Eutectoid decomposition in rapidly solidified α-Fe2Si5-based thermoelectric alloys. J Alloys Compd 316:212–219CrossRefGoogle Scholar
  21. 21.
    Yamauchi I, Nagase T, Ohnaka I (1999) Temperature dependence of β-phase transformation in Cu added Fe2Si5 thermoelectric material. J Alloys Compd 292:181CrossRefGoogle Scholar
  22. 22.
    Jiang JX, Sasakawa T, Matsugi K, Sasaki G, Yanagisawa O (2005) Thermoelectric properties of β-FeSi2 with Si dispersoids formed by decomposition of α-Fe2Si5 based alloys. J Alloys Compd 391:115–122CrossRefGoogle Scholar
  23. 23.
    Waldecker G, Meinhold H, Birkholz U (1973) Thermal conductivity of semiconducting and metallic FeSi2. Phys Status Solidi A 15:143–149CrossRefGoogle Scholar
  24. 24.
    Miettinen J (1998) Reassessed thermodynamic solution phase data for ternary Fe-Si-C system. CALPHAD 22:231–256CrossRefGoogle Scholar
  25. 25.
    Volmer M, Weber A (1926) Keimbildung in übersattigen gebilden. Zeitschro Phys Chem 22:197–215Google Scholar
  26. 26.
    Kim SW, Cho MK, Mishima Y, Choi DC (2003) High temperature thermoelectric properties of p- and n-type β-FeSi2 with some dopants. Intermetallics 11:399–405CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • U. Ail
    • 1
  • S. Gorsse
    • 1
    • 2
    • 3
    Email author
  • S. Perumal
    • 1
  • M. Prakasam
    • 1
  • A. Umarji
    • 4
  • S. Vivès
    • 3
  • P. Bellanger
    • 3
  • R. Decourt
    • 1
  1. 1.CNRS, ICMCB, UPR 9048PessacFrance
  2. 2.Bordeaux INP, ICMCB, UPR 9048PessacFrance
  3. 3.Univ. Bordeaux, ICMCB, UPR 9048PessacFrance
  4. 4.Materials Research CentreIndian Institute of ScienceBangaloreIndia

Personalised recommendations